Upload 5 files
Browse files- all_datasets.py +18 -0
- level_classifier_tool_2.py +248 -0
- phrases.py +52 -0
- task_temp.py +0 -0
- utils.py +31 -0
all_datasets.py
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#%%
|
| 2 |
+
from datasets import load_dataset
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import os
|
| 5 |
+
os.chdir(os.path.dirname(__file__))
|
| 6 |
+
clean_math = pd.read_json(
|
| 7 |
+
"deepmind_math.jsonl",
|
| 8 |
+
lines=True,
|
| 9 |
+
orient="records"
|
| 10 |
+
)
|
| 11 |
+
GSM8k = load_dataset('openai/gsm8k','main', split= 'train')
|
| 12 |
+
MMMLU = load_dataset('cais/mmlu', 'college_mathematics', split='test+validation')
|
| 13 |
+
MMMU = load_dataset('MMMU/MMMU', 'Math', split='test+validation')
|
| 14 |
+
Olympiad_math = load_dataset('Hothan/OlympiadBench', 'TP_TO_maths_en_COMP', split='train')
|
| 15 |
+
Olympiad_math2 = load_dataset('Hothan/OlympiadBench', 'OE_TO_maths_en_COMP', split='train')
|
| 16 |
+
ScienceQA = load_dataset("derek-thomas/ScienceQA", split="train")
|
| 17 |
+
PubmedQA = load_dataset('qiaojin/PubMedQA','pqa_unlabeled', split='train')
|
| 18 |
+
# %%
|
level_classifier_tool_2.py
ADDED
|
@@ -0,0 +1,248 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
from dataclasses import dataclass
|
| 4 |
+
from typing import Dict, List, Tuple, Iterable, Optional, Literal, Callable, Any
|
| 5 |
+
import math
|
| 6 |
+
import torch
|
| 7 |
+
from transformers import AutoTokenizer, AutoModel
|
| 8 |
+
#import tensorflow
|
| 9 |
+
Agg = Literal["mean", "max", "topk_mean"]
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
# --------------------------- Embedding backend ---------------------------
|
| 13 |
+
|
| 14 |
+
@dataclass
|
| 15 |
+
class HFEmbeddingBackend:
|
| 16 |
+
"""
|
| 17 |
+
Minimal huggingface transformers encoder for sentence-level embeddings.
|
| 18 |
+
Uses mean pooling over last_hidden_state and L2 normalizes the result.
|
| 19 |
+
"""
|
| 20 |
+
model_name: str = "google/embeddinggemma-300m"
|
| 21 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 22 |
+
TOK = AutoTokenizer.from_pretrained(model_name)
|
| 23 |
+
MODEL = AutoModel.from_pretrained(model_name)
|
| 24 |
+
MODEL.to(device).eval()
|
| 25 |
+
|
| 26 |
+
def encode(self, texts: Iterable[str], batch_size: int = 32) -> "tuple[torch.Tensor, list[str]]":
|
| 27 |
+
"""
|
| 28 |
+
Returns (embeddings, texts_list). Embeddings have shape [N, D] and are unit-normalized.
|
| 29 |
+
"""
|
| 30 |
+
texts_list = list(texts)
|
| 31 |
+
if not texts_list:
|
| 32 |
+
return torch.empty((0, self.MODEL.config.hidden_size)), [] # type: ignore
|
| 33 |
+
|
| 34 |
+
all_out = []
|
| 35 |
+
with torch.inference_mode():
|
| 36 |
+
for i in range(0, len(texts_list), batch_size):
|
| 37 |
+
batch = texts_list[i:i + batch_size]
|
| 38 |
+
enc = self.TOK(batch, padding=True, truncation=True, return_tensors="pt").to(self.device) # type: ignore
|
| 39 |
+
out = self.MODEL(**enc)
|
| 40 |
+
last = out.last_hidden_state # [B, T, H]
|
| 41 |
+
mask = enc["attention_mask"].unsqueeze(-1) # [B, T, 1]
|
| 42 |
+
# mean pool
|
| 43 |
+
summed = (last * mask).sum(dim=1)
|
| 44 |
+
counts = mask.sum(dim=1).clamp(min=1)
|
| 45 |
+
pooled = summed / counts
|
| 46 |
+
# L2 normalize
|
| 47 |
+
pooled = pooled / pooled.norm(dim=1, keepdim=True).clamp(min=1e-12)
|
| 48 |
+
all_out.append(pooled.cpu())
|
| 49 |
+
embs = torch.cat(all_out, dim=0) if all_out else torch.empty((0, self.MODEL.config.hidden_size)) # type: ignore
|
| 50 |
+
return embs, texts_list
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
# --------------------------- Utilities ---------------------------
|
| 54 |
+
|
| 55 |
+
def _normalize_whitespace(s: str) -> str:
|
| 56 |
+
return " ".join(s.strip().split())
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def _default_preprocess(s: str) -> str:
|
| 60 |
+
# Keep simple, deterministic preprocessing. Users can override with a custom callable.
|
| 61 |
+
return _normalize_whitespace(s)
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
@dataclass
|
| 65 |
+
class PhraseIndex:
|
| 66 |
+
phrases_by_level: Dict[str, List[str]]
|
| 67 |
+
embeddings_by_level: Dict[str, "Any"] # torch.Tensor, but keep Any to avoid hard dep at import time
|
| 68 |
+
model_name: str
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def build_phrase_index(
|
| 72 |
+
backend: HFEmbeddingBackend,
|
| 73 |
+
phrases_by_level: Dict[str, Iterable[str]],
|
| 74 |
+
) -> PhraseIndex:
|
| 75 |
+
"""
|
| 76 |
+
Pre-encode all anchor phrases per level into a searchable index.
|
| 77 |
+
"""
|
| 78 |
+
# Flatten texts while preserving level boundaries
|
| 79 |
+
cleaned: Dict[str, List[str]] = {lvl: [_default_preprocess(p) for p in phrases] for lvl, phrases in phrases_by_level.items()}
|
| 80 |
+
all_texts: List[str] = []
|
| 81 |
+
spans: List[Tuple[str, int, int]] = [] # (level, start, end) in the flat list
|
| 82 |
+
cur = 0
|
| 83 |
+
for lvl, plist in cleaned.items():
|
| 84 |
+
start = cur
|
| 85 |
+
all_texts.extend(plist)
|
| 86 |
+
cur += len(plist)
|
| 87 |
+
spans.append((lvl, start, cur))
|
| 88 |
+
|
| 89 |
+
embs, _ = backend.encode(all_texts)
|
| 90 |
+
# Slice embeddings back into level buckets
|
| 91 |
+
embeddings_by_level: Dict[str, "Any"] = {}
|
| 92 |
+
for lvl, start, end in spans:
|
| 93 |
+
embeddings_by_level[lvl] = embs[start:end] if end > start else torch.empty((0, embs.shape[1])) # type: ignore
|
| 94 |
+
|
| 95 |
+
return PhraseIndex(phrases_by_level={lvl: list(pl) for lvl, pl in cleaned.items()},
|
| 96 |
+
embeddings_by_level=embeddings_by_level,
|
| 97 |
+
model_name=backend.model_name)
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def _aggregate_sims(
|
| 101 |
+
sims: "Any", agg: Agg, topk: int
|
| 102 |
+
) -> float:
|
| 103 |
+
"""
|
| 104 |
+
Aggregate a 1D tensor of similarities into a single score.
|
| 105 |
+
"""
|
| 106 |
+
if sims.numel() == 0:
|
| 107 |
+
return float("nan")
|
| 108 |
+
if agg == "mean":
|
| 109 |
+
return float(sims.mean().item())
|
| 110 |
+
if agg == "max":
|
| 111 |
+
return float(sims.max().item())
|
| 112 |
+
if agg == "topk_mean":
|
| 113 |
+
k = min(topk, sims.numel())
|
| 114 |
+
topk_vals, _ = torch.topk(sims, k)
|
| 115 |
+
return float(topk_vals.mean().item())
|
| 116 |
+
raise ValueError(f"Unknown agg: {agg}")
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
# --------------------------- Public API ---------------------------
|
| 120 |
+
|
| 121 |
+
def classify_levels_phrases(
|
| 122 |
+
question: str,
|
| 123 |
+
blooms_phrases: Dict[str, Iterable[str]],
|
| 124 |
+
dok_phrases: Dict[str, Iterable[str]],
|
| 125 |
+
*,
|
| 126 |
+
model_name: str = "google/embeddinggemma-300m",
|
| 127 |
+
agg: Agg = "max",
|
| 128 |
+
topk: int = 5,
|
| 129 |
+
preprocess: Optional[Callable[[str], str]] = None,
|
| 130 |
+
backend: Optional[HFEmbeddingBackend] = None,
|
| 131 |
+
prebuilt_bloom_index: Optional[PhraseIndex] = None,
|
| 132 |
+
prebuilt_dok_index: Optional[PhraseIndex] = None,
|
| 133 |
+
return_phrase_matches: bool = True,
|
| 134 |
+
) -> Dict[str, Any]:
|
| 135 |
+
"""
|
| 136 |
+
Score a question against Bloom's taxonomy and DOK (Depth of Knowledge)
|
| 137 |
+
using cosine similarity to level-specific anchor phrases.
|
| 138 |
+
|
| 139 |
+
Parameters
|
| 140 |
+
----------
|
| 141 |
+
question : str
|
| 142 |
+
The input question or prompt.
|
| 143 |
+
blooms_phrases : dict[str, Iterable[str]]
|
| 144 |
+
Mapping level -> list of anchor phrases for Bloom's.
|
| 145 |
+
dok_phrases : dict[str, Iterable[str]]
|
| 146 |
+
Mapping level -> list of anchor phrases for DOK.
|
| 147 |
+
model_name : str
|
| 148 |
+
Hugging Face model name for text embeddings. Ignored when `backend` provided.
|
| 149 |
+
agg : {"mean","max","topk_mean"}
|
| 150 |
+
Aggregation over phrase similarities within a level.
|
| 151 |
+
topk : int
|
| 152 |
+
Used only when `agg="topk_mean"`.
|
| 153 |
+
preprocess : Optional[Callable[[str], str]]
|
| 154 |
+
Preprocessing function for the question string. Defaults to whitespace normalization.
|
| 155 |
+
backend : Optional[HFEmbeddingBackend]
|
| 156 |
+
Injected embedding backend. If not given, one is constructed.
|
| 157 |
+
prebuilt_bloom_index, prebuilt_dok_index : Optional[PhraseIndex]
|
| 158 |
+
If provided, reuse precomputed phrase embeddings to avoid re-encoding.
|
| 159 |
+
return_phrase_matches : bool
|
| 160 |
+
If True, returns per-level top contributing phrases.
|
| 161 |
+
|
| 162 |
+
Returns
|
| 163 |
+
-------
|
| 164 |
+
dict
|
| 165 |
+
{
|
| 166 |
+
"question": ...,
|
| 167 |
+
"model_name": ...,
|
| 168 |
+
"blooms": {
|
| 169 |
+
"scores": {level: float, ...},
|
| 170 |
+
"best_level": str,
|
| 171 |
+
"best_score": float,
|
| 172 |
+
"top_phrases": {level: [(phrase, sim_float), ...], ...} # only if return_phrase_matches
|
| 173 |
+
},
|
| 174 |
+
"dok": {
|
| 175 |
+
"scores": {level: float, ...},
|
| 176 |
+
"best_level": str,
|
| 177 |
+
"best_score": float,
|
| 178 |
+
"top_phrases": {level: [(phrase, sim_float), ...], ...} # only if return_phrase_matches
|
| 179 |
+
},
|
| 180 |
+
"config": {"agg": agg, "topk": topk if agg=='topk_mean' else None}
|
| 181 |
+
}
|
| 182 |
+
"""
|
| 183 |
+
preprocess = preprocess or _default_preprocess
|
| 184 |
+
question_clean = preprocess(question)
|
| 185 |
+
|
| 186 |
+
# Prepare backend
|
| 187 |
+
be = backend or HFEmbeddingBackend(model_name=model_name)
|
| 188 |
+
|
| 189 |
+
# Build / reuse indices
|
| 190 |
+
bloom_index = prebuilt_bloom_index or build_phrase_index(be, blooms_phrases)
|
| 191 |
+
dok_index = prebuilt_dok_index or build_phrase_index(be, dok_phrases)
|
| 192 |
+
|
| 193 |
+
# Encode question
|
| 194 |
+
q_emb, _ = be.encode([question_clean])
|
| 195 |
+
q_emb = q_emb[0:1] # [1, D]
|
| 196 |
+
|
| 197 |
+
def _score_block(index: PhraseIndex) -> Tuple[Dict[str, float], Dict[str, List[Tuple[str, float]]]]:
|
| 198 |
+
scores: Dict[str, float] = {}
|
| 199 |
+
top_contribs: Dict[str, List[Tuple[str, float]]] = {}
|
| 200 |
+
|
| 201 |
+
for lvl, phrases in index.phrases_by_level.items():
|
| 202 |
+
embs = index.embeddings_by_level[lvl] # [N, D]
|
| 203 |
+
if embs.numel() == 0:
|
| 204 |
+
scores[lvl] = float("nan")
|
| 205 |
+
top_contribs[lvl] = []
|
| 206 |
+
continue
|
| 207 |
+
sims = (q_emb @ embs.T).squeeze(0) # cosine sim due to L2 norm
|
| 208 |
+
scores[lvl] = _aggregate_sims(sims, agg, topk)
|
| 209 |
+
if return_phrase_matches:
|
| 210 |
+
k = min(5, sims.numel())
|
| 211 |
+
vals, idxs = torch.topk(sims, k)
|
| 212 |
+
top_contribs[lvl] = [(phrases[int(i)], float(v.item())) for v, i in zip(vals, idxs)]
|
| 213 |
+
return scores, top_contribs
|
| 214 |
+
|
| 215 |
+
bloom_scores, bloom_top = _score_block(bloom_index)
|
| 216 |
+
dok_scores, dok_top = _score_block(dok_index)
|
| 217 |
+
|
| 218 |
+
def _best(scores: Dict[str, float]) -> Tuple[str, float]:
|
| 219 |
+
# max with NaN-safe handling
|
| 220 |
+
best_lvl, best_val = None, -float("inf")
|
| 221 |
+
for lvl, val in scores.items():
|
| 222 |
+
if isinstance(val, float) and (not math.isnan(val)) and val > best_val:
|
| 223 |
+
best_lvl, best_val = lvl, val
|
| 224 |
+
return best_lvl or "", best_val
|
| 225 |
+
|
| 226 |
+
best_bloom, best_bloom_val = _best(bloom_scores)
|
| 227 |
+
best_dok, best_dok_val = _best(dok_scores)
|
| 228 |
+
|
| 229 |
+
return {
|
| 230 |
+
"question": question_clean,
|
| 231 |
+
"model_name": be.model_name,
|
| 232 |
+
"blooms": {
|
| 233 |
+
"scores": bloom_scores,
|
| 234 |
+
"best_level": best_bloom,
|
| 235 |
+
"best_score": best_bloom_val,
|
| 236 |
+
"top_phrases": bloom_top if return_phrase_matches else None,
|
| 237 |
+
},
|
| 238 |
+
"dok": {
|
| 239 |
+
"scores": dok_scores,
|
| 240 |
+
"best_level": best_dok,
|
| 241 |
+
"best_score": best_dok_val,
|
| 242 |
+
"top_phrases": dok_top if return_phrase_matches else None,
|
| 243 |
+
},
|
| 244 |
+
"config": {
|
| 245 |
+
"agg": agg,
|
| 246 |
+
"topk": topk if agg == "topk_mean" else None,
|
| 247 |
+
},
|
| 248 |
+
}
|
phrases.py
ADDED
|
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
BLOOMS_PHRASES = {
|
| 2 |
+
"Remember": [
|
| 3 |
+
"define", "list", "recall", "identify", "state", "label", "name", "recognize", "find",
|
| 4 |
+
"select", "match", "choose", "give", "write", "tell", "show"
|
| 5 |
+
],
|
| 6 |
+
"Understand": [
|
| 7 |
+
"classify", "interpret", "summarize", "explain", "estimate", "describe", "discuss",
|
| 8 |
+
"predict", "paraphrase", "restate", "illustrate", "compare", "contrast", "report"
|
| 9 |
+
],
|
| 10 |
+
"Apply": [
|
| 11 |
+
"apply", "solve", "use", "demonstrate", "calculate", "implement", "perform",
|
| 12 |
+
"execute", "carry out", "practice", "employ", "sketch"
|
| 13 |
+
],
|
| 14 |
+
"Analyze": [
|
| 15 |
+
"analyze", "differentiate", "organize", "structure", "break down", "distinguish",
|
| 16 |
+
"dissect", "examine", "compare", "contrast", "attribute", "investigate"
|
| 17 |
+
],
|
| 18 |
+
"Evaluate": [
|
| 19 |
+
"evaluate", "judge", "critique", "assess", "defend", "argue", "select", "support",
|
| 20 |
+
"appraise", "recommend", "conclude", "review"
|
| 21 |
+
],
|
| 22 |
+
"Create": [
|
| 23 |
+
"create", "design", "compose", "plan", "construct", "produce", "devise", "generate",
|
| 24 |
+
"develop", "formulate", "invent", "build"
|
| 25 |
+
]
|
| 26 |
+
}
|
| 27 |
+
|
| 28 |
+
DOK_PHRASES = {
|
| 29 |
+
"DOK1": [
|
| 30 |
+
"define", "list", "recall", "compute", "identify", "state", "label", "how many",
|
| 31 |
+
"name", "recognize", "find", "determine", "select", "match", "choose", "give",
|
| 32 |
+
"write", "tell", "show", "point out"
|
| 33 |
+
],
|
| 34 |
+
"DOK2": [
|
| 35 |
+
"classify", "interpret", "estimate", "organise", "summarise", "explain", "solve",
|
| 36 |
+
"categorize", "group", "compare", "contrast", "distinguish", "make observations",
|
| 37 |
+
"collect data", "display data", "arrange", "sort", "paraphrase", "restate", "predict",
|
| 38 |
+
"approximate", "demonstrate", "illustrate", "describe", "analyze data"
|
| 39 |
+
],
|
| 40 |
+
"DOK3": [
|
| 41 |
+
"justify", "analyze", "generalise", "compare", "construct", "investigate",
|
| 42 |
+
"support", "defend", "argue", "examine", "differentiate", "criticize", "debate",
|
| 43 |
+
"test", "experiment", "hypothesize", "draw conclusions", "break down", "dissect",
|
| 44 |
+
"probe", "explore", "develop", "formulate"
|
| 45 |
+
],
|
| 46 |
+
"DOK4": [
|
| 47 |
+
"design", "synthesize", "model", "prove", "evaluate system", "critique", "create",
|
| 48 |
+
"compose", "plan", "invent", "devise", "generate", "build", "construct", "produce",
|
| 49 |
+
"formulate", "improve", "revise", "assess", "appraise", "judge", "recommend",
|
| 50 |
+
"predict outcome", "simulate"
|
| 51 |
+
]
|
| 52 |
+
}
|
task_temp.py
ADDED
|
File without changes
|
utils.py
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
+
def extract_top_level_json(s: str) -> str:
|
| 3 |
+
start = s.find("{")
|
| 4 |
+
if start == -1:
|
| 5 |
+
return ""
|
| 6 |
+
depth = 0
|
| 7 |
+
for i in range(start, len(s)):
|
| 8 |
+
ch = s[i]
|
| 9 |
+
if ch == "{":
|
| 10 |
+
depth += 1
|
| 11 |
+
elif ch == "}":
|
| 12 |
+
depth -= 1
|
| 13 |
+
if depth == 0:
|
| 14 |
+
candidate = s[start:i + 1]
|
| 15 |
+
try:
|
| 16 |
+
json.loads(candidate) # validate
|
| 17 |
+
return candidate
|
| 18 |
+
except Exception:
|
| 19 |
+
return ""
|
| 20 |
+
return ""
|
| 21 |
+
@spaces.GPU(duration=25)
|
| 22 |
+
def get_local_model_gpu(model_id: str):
|
| 23 |
+
import torch
|
| 24 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 25 |
+
|
| 26 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 27 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 28 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16 if device == "cuda" else torch.float32)
|
| 29 |
+
model.to(device)
|
| 30 |
+
model.eval()
|
| 31 |
+
return model
|