File size: 35,760 Bytes
572db01 403fccb 190f7f8 2357c09 0bf785b 2357c09 403fccb 2357c09 403fccb 2357c09 403fccb 2357c09 403fccb 2357c09 403fccb aafbb5b 2357c09 403fccb 2357c09 403fccb aafbb5b 2357c09 aafbb5b 2357c09 403fccb 2357c09 403fccb 2357c09 403fccb 2c25d29 403fccb 2357c09 403fccb 2357c09 403fccb 2c25d29 403fccb 2357c09 403fccb 2357c09 403fccb 2357c09 403fccb 2c25d29 403fccb 2357c09 403fccb 2357c09 aafbb5b 2357c09 403fccb 2357c09 403fccb 0bf785b 403fccb 0bf785b 6096865 0bf785b 403fccb bd077ae 2357c09 572db01 6096865 572db01 6096865 572db01 6096865 572db01 6096865 572db01 2c25d29 eb97f40 6096865 2c25d29 572db01 6096865 2357c09 6096865 2357c09 6096865 2357c09 6096865 2357c09 6096865 2357c09 6096865 2357c09 6096865 2357c09 6096865 2357c09 6096865 2357c09 6096865 572db01 6096865 2357c09 6096865 2357c09 6096865 2357c09 6096865 2357c09 6096865 2357c09 403fccb 2357c09 6096865 403fccb 74c5fd9 6096865 2c25d29 6096865 2357c09 2c25d29 6096865 82dc143 2357c09 2c25d29 6096865 2c25d29 82dc143 2c25d29 82dc143 6096865 2c25d29 6096865 2357c09 2c25d29 6096865 2c25d29 82dc143 4c90d09 6096865 2c25d29 6096865 2c25d29 2357c09 2c25d29 6096865 2c25d29 403fccb 6096865 403fccb 2357c09 403fccb 6096865 2c25d29 6096865 2357c09 6096865 bca7169 6096865 5f5440c d8534c2 5f5440c d8534c2 5f5440c 403fccb 2357c09 403fccb 2357c09 403fccb 0bf785b 403fccb 2357c09 b88f42c 2357c09 0bf785b 2357c09 0bf785b 403fccb 5ed9cf9 2357c09 b88f42c 5ed9cf9 b88f42c 5ed9cf9 2357c09 5ed9cf9 2357c09 5ed9cf9 2357c09 5ed9cf9 2357c09 b88f42c 5ed9cf9 403fccb 74c5fd9 403fccb 44d2cac 2357c09 44d2cac 74c5fd9 44d2cac 74c5fd9 2357c09 74c5fd9 ade4e03 44d2cac 74c5fd9 403fccb 74c5fd9 eb97f40 d8534c2 572db01 2357c09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 |
import logging
import os
import sys
import tempfile
from pathlib import Path
import requests
import gradio as gr
import matplotlib.pyplot as plt
from PIL import Image
# Import configuration for end consultation logic
try:
from .config import get_flask_urls, get_doctors_page_urls, TIMEOUT_SETTINGS
except ImportError:
def get_flask_urls():
return [
"http://127.0.0.1:600/complete_appointment",
"http://localhost:600/complete_appointment",
"https://your-flask-app-domain.com/complete_appointment",
"http://your-flask-app-ip:600/complete_appointment"
]
def get_doctors_page_urls():
return {
"local": "http://127.0.0.1:600/doctors",
"production": "https://your-flask-app-domain.com/doctors"
}
TIMEOUT_SETTINGS = {"connection_timeout": 5, "request_timeout": 10}
# Add parent directory to path
parent_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.append(parent_dir)
# Import our modules for model and utility logic
from models.multimodal_fusion import MultimodalFusion
from utils.preprocessing import enhance_xray_image, normalize_report_text
from utils.visualization import (
plot_image_prediction,
plot_multimodal_results,
plot_report_entities,
)
# Set up logging
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
handlers=[logging.StreamHandler(), logging.FileHandler("mediSync.log")],
)
logger = logging.getLogger(__name__)
# Ensure sample data directory exists
os.makedirs(os.path.join(parent_dir, "data", "sample"), exist_ok=True)
class MediSyncApp:
"""
Main application class for the MediSync multi-modal medical analysis system.
"""
def __init__(self):
"""Initialize the application and load models."""
self.logger = logging.getLogger(__name__)
self.logger.info("Initializing MediSync application")
self.fusion_model = None
self.image_model = None
self.text_model = None
def load_models(self):
"""
Load models if not already loaded.
Returns:
bool: True if models loaded successfully, False otherwise
"""
try:
if self.fusion_model is None:
self.logger.info("Loading models...")
self.fusion_model = MultimodalFusion()
self.image_model = self.fusion_model.image_analyzer
self.text_model = self.fusion_model.text_analyzer
self.logger.info("Models loaded successfully")
return True
except Exception as e:
self.logger.error(f"Error loading models: {e}")
return False
def analyze_image(self, image):
"""
Analyze a medical image.
Args:
image: Image file uploaded through Gradio
Returns:
tuple: (image, image_results_html, plot_as_html)
"""
try:
if image is None:
return None, "Please upload an image first.", None
if not self.load_models() or self.image_model is None:
return image, "Error: Models not loaded properly.", None
temp_dir = tempfile.mkdtemp()
temp_path = os.path.join(temp_dir, "upload.png")
if isinstance(image, str):
from shutil import copyfile
copyfile(image, temp_path)
else:
image.save(temp_path)
self.logger.info(f"Analyzing image: {temp_path}")
results = self.image_model.analyze(temp_path)
fig = plot_image_prediction(
image,
results.get("predictions", []),
f"Primary Finding: {results.get('primary_finding', 'Unknown')}",
)
plot_html = self.fig_to_html(fig)
html_result = f"""
<div class="medisync-card medisync-card-bg medisync-force-text">
<h2 class="medisync-title medisync-blue">
<b>X-ray Analysis Results</b>
</h2>
<p><strong>Primary Finding:</strong> {results.get("primary_finding", "Unknown")}</p>
<p><strong>Confidence:</strong> {results.get("confidence", 0):.1%}</p>
<p><strong>Abnormality Detected:</strong> {"Yes" if results.get("has_abnormality", False) else "No"}</p>
<h3>Top Predictions:</h3>
<ul>
"""
for label, prob in results.get("predictions", [])[:5]:
html_result += f"<li>{label}: {prob:.1%}</li>"
html_result += "</ul>"
explanation = self.image_model.get_explanation(results)
html_result += f"<h3>Analysis Explanation:</h3><p>{explanation}</p>"
html_result += "</div>"
return image, html_result, plot_html
except Exception as e:
self.logger.error(f"Error in image analysis: {e}")
return image, f"Error analyzing image: {str(e)}", None
def analyze_text(self, text):
"""
Analyze a medical report text.
Args:
text: Report text input through Gradio
Returns:
tuple: (text, text_results_html, entities_plot_html)
"""
try:
if not text or text.strip() == "":
return "", "Please enter medical report text.", None
if not self.load_models() or self.text_model is None:
return text, "Error: Models not loaded properly.", None
if not text or len(text.strip()) < 10:
return (
text,
"Error: Please enter a valid medical report text (at least 10 characters).",
None,
)
normalized_text = normalize_report_text(text)
self.logger.info("Analyzing medical report text")
results = self.text_model.analyze(normalized_text)
entities = results.get("entities", {})
fig = plot_report_entities(normalized_text, entities)
entities_plot_html = self.fig_to_html(fig)
html_result = f"""
<div class="medisync-card medisync-card-bg medisync-force-text">
<h2 class="medisync-title medisync-green">
<b>Text Analysis Results</b>
</h2>
<p><strong>Severity Level:</strong> {results.get("severity", {}).get("level", "Unknown")}</p>
<p><strong>Severity Score:</strong> {results.get("severity", {}).get("score", 0)}/4</p>
<p><strong>Confidence:</strong> {results.get("severity", {}).get("confidence", 0):.1%}</p>
<h3>Key Findings:</h3>
<ul>
"""
findings = results.get("findings", [])
if findings:
for finding in findings:
html_result += f"<li>{finding}</li>"
else:
html_result += "<li>No specific findings detailed.</li>"
html_result += "</ul>"
html_result += "<h3>Extracted Medical Entities:</h3>"
for category, items in entities.items():
if items:
html_result += f"<p><strong>{category.capitalize()}:</strong> {', '.join(items)}</p>"
html_result += "<h3>Follow-up Recommendations:</h3><ul>"
followups = results.get("followup_recommendations", [])
if followups:
for rec in followups:
html_result += f"<li>{rec}</li>"
else:
html_result += "<li>No specific follow-up recommendations.</li>"
html_result += "</ul></div>"
return text, html_result, entities_plot_html
except Exception as e:
self.logger.error(f"Error in text analysis: {e}")
return text, f"Error analyzing text: {str(e)}", None
def analyze_multimodal(self, image, text):
"""
Perform multimodal analysis of image and text.
Args:
image: Image file uploaded through Gradio
text: Report text input through Gradio
Returns:
tuple: (results_html, multimodal_plot_html)
"""
try:
if not self.load_models() or self.fusion_model is None:
return "Error: Models not loaded properly.", None
if image is None:
return "Error: Please upload an X-ray image for analysis.", None
if not text or len(text.strip()) < 10:
return (
"Error: Please enter a valid medical report text (at least 10 characters).",
None,
)
temp_dir = tempfile.mkdtemp()
temp_path = os.path.join(temp_dir, "upload.png")
if isinstance(image, str):
from shutil import copyfile
copyfile(image, temp_path)
else:
image.save(temp_path)
normalized_text = normalize_report_text(text)
self.logger.info("Performing multimodal analysis")
results = self.fusion_model.analyze(temp_path, normalized_text)
fig = plot_multimodal_results(results, image, text)
plot_html = self.fig_to_html(fig)
explanation = self.fusion_model.get_explanation(results)
html_result = f"""
<div class="medisync-card medisync-card-bg medisync-force-text">
<h2 class="medisync-title medisync-purple">
<b>Multimodal Analysis Results</b>
</h2>
<h3>Overview</h3>
<p><strong>Primary Finding:</strong> {results.get("primary_finding", "Unknown")}</p>
<p><strong>Severity Level:</strong> {results.get("severity", {}).get("level", "Unknown")}</p>
<p><strong>Severity Score:</strong> {results.get("severity", {}).get("score", 0)}/4</p>
<p><strong>Agreement Score:</strong> {results.get("agreement_score", 0):.0%}</p>
<h3>Detailed Findings</h3>
<ul>
"""
findings = results.get("findings", [])
if findings:
for finding in findings:
html_result += f"<li>{finding}</li>"
else:
html_result += "<li>No specific findings detailed.</li>"
html_result += "</ul>"
html_result += "<h3>Recommended Follow-up</h3><ul>"
followups = results.get("followup_recommendations", [])
if followups:
for rec in followups:
html_result += f"<li>{rec}</li>"
else:
html_result += "<li>No specific follow-up recommendations provided.</li>"
html_result += "</ul>"
confidence = results.get("severity", {}).get("confidence", 0)
html_result += f"""
<p><em>Note: This analysis has a confidence level of {confidence:.0%}.
Please consult with healthcare professionals for official diagnosis.</em></p>
<h3>Analysis Explanation:</h3>
<p>{explanation}</p>
</div>
"""
return html_result, plot_html
except Exception as e:
self.logger.error(f"Error in multimodal analysis: {e}")
return f"Error in multimodal analysis: {str(e)}", None
def enhance_image(self, image):
"""
Enhance X-ray image contrast.
Args:
image: Image file uploaded through Gradio
Returns:
PIL.Image: Enhanced image
"""
try:
if image is None:
return None
temp_dir = tempfile.mkdtemp()
temp_path = os.path.join(temp_dir, "upload.png")
if isinstance(image, str):
from shutil import copyfile
copyfile(image, temp_path)
else:
image.save(temp_path)
self.logger.info(f"Enhancing image: {temp_path}")
output_path = os.path.join(temp_dir, "enhanced.png")
enhance_xray_image(temp_path, output_path)
enhanced = Image.open(output_path)
return enhanced
except Exception as e:
self.logger.error(f"Error enhancing image: {e}")
return image
def fig_to_html(self, fig):
"""Convert matplotlib figure to HTML for display in Gradio."""
try:
import base64
import io
buf = io.BytesIO()
fig.savefig(buf, format="png", bbox_inches="tight", dpi=100, facecolor=fig.get_facecolor())
buf.seek(0)
img_str = base64.b64encode(buf.read()).decode("utf-8")
plt.close(fig)
return f'<img src="data:image/png;base64,{img_str}" style="max-width: 100%; height: auto; background: transparent;"/>'
except Exception as e:
self.logger.error(f"Error converting figure to HTML: {e}")
return "<p>Error displaying visualization.</p>"
def complete_appointment(appointment_id):
try:
flask_urls = get_flask_urls()
payload = {"appointment_id": appointment_id}
for flask_api_url in flask_urls:
try:
logger.info(f"Trying to connect to: {flask_api_url}")
response = requests.post(flask_api_url, json=payload, timeout=TIMEOUT_SETTINGS["connection_timeout"])
if response.status_code == 200:
return {"status": "success", "message": "Appointment completed successfully"}
elif response.status_code == 404:
return {"status": "error", "message": "Appointment not found"}
else:
logger.warning(f"Unexpected response from {flask_api_url}: {response.status_code}")
continue
except requests.exceptions.ConnectionError:
logger.warning(f"Connection failed to {flask_api_url}")
continue
except requests.exceptions.Timeout:
logger.warning(f"Timeout connecting to {flask_api_url}")
continue
except Exception as e:
logger.warning(f"Error with {flask_api_url}: {e}")
continue
return {
"status": "error",
"message": "Cannot connect to Flask app. Please ensure the Flask app is running and accessible."
}
except Exception as e:
logger.error(f"Error completing appointment: {e}")
return {"status": "error", "message": f"Error: {str(e)}"}
def create_interface():
import urllib.parse
app = MediSyncApp()
example_report = """
CHEST X-RAY EXAMINATION
CLINICAL HISTORY: 55-year-old male with cough and fever.
FINDINGS: The heart size is at the upper limits of normal. The lungs are clear without focal consolidation,
effusion, or pneumothorax. There is mild prominence of the pulmonary vasculature. No pleural effusion is seen.
There is a small nodular opacity noted in the right lower lobe measuring approximately 8mm, which is suspicious
and warrants further investigation. The mediastinum is unremarkable. The visualized bony structures show no acute abnormalities.
IMPRESSION:
1. Mild cardiomegaly.
2. 8mm nodular opacity in the right lower lobe, recommend follow-up CT for further evaluation.
3. No acute pulmonary parenchymal abnormality.
RECOMMENDATIONS: Follow-up chest CT to further characterize the nodular opacity in the right lower lobe.
"""
sample_images_dir = Path(parent_dir) / "data" / "sample"
sample_images = list(sample_images_dir.glob("*.png")) + list(sample_images_dir.glob("*.jpg"))
sample_image_path = str(sample_images[0]) if sample_images else None
with gr.Blocks(
title="MediSync: Multi-Modal Medical Analysis System",
theme=gr.themes.Default(),
css="""
/* Modern neumorphic card style for all result containers */
.medisync-card {
border-radius: 18px;
box-shadow: 0 4px 24px 0 rgba(0,0,0,0.10), 0 1.5px 4px 0 rgba(0,191,174,0.08);
margin: 18px 0;
padding: 24px 24px 18px 24px;
font-size: 1.08rem;
transition: background 0.2s, color 0.2s;
}
.medisync-card-bg {
background: var(--background-fill-primary, #f8f9fa);
color: var(--body-text-color, #222);
}
.medisync-title {
font-weight: 900;
font-size: 1.45em;
margin-bottom: 0.7em;
letter-spacing: 1px;
text-shadow: 0 2px 8px #00bfae33, 0 1px 0 #fff;
/* Remove display:flex and gap for simple bold text */
}
.medisync-blue { color: #00bfae; }
.medisync-green { color: #28a745; }
.medisync-purple { color: #6c63ff; }
.medisync-card ul, .medisync-card ol {
margin-left: 1.2em;
}
.medisync-card li {
margin-bottom: 0.2em;
}
/* Button and input styling for modern look */
.gr-button, .end-consultation-btn {
border-radius: 8px !important;
font-weight: 600 !important;
font-size: 1rem !important;
padding: 8px 18px !important;
min-width: 120px !important;
min-height: 38px !important;
transition: background 0.2s, color 0.2s;
}
.end-consultation-btn {
background: linear-gradient(90deg, #dc3545 60%, #ff7675 100%) !important;
border: none !important;
color: #fff !important;
box-shadow: 0 2px 8px 0 rgba(220,53,69,0.10);
font-size: 1.05rem !important;
padding: 10px 24px !important;
min-width: 160px !important;
min-height: 40px !important;
}
.end-consultation-btn:hover {
background: linear-gradient(90deg, #c82333 60%, #ff7675 100%) !important;
}
/* Responsive tweaks */
@media (max-width: 900px) {
.medisync-card { padding: 16px 8px 12px 8px; }
.medisync-title { font-size: 1.1em; }
}
/* Ensure text is visible in dark mode */
html[data-theme="dark"] .medisync-card-bg,
html[data-theme="dark"] .medisync-card-bg.medisync-force-text {
background: #23272f !important;
color: #f8fafc !important;
}
html[data-theme="dark"] .medisync-title {
color: #00bfae !important;
text-shadow: 0 2px 8px #00bfae33, 0 1px 0 #23272f;
}
html[data-theme="dark"] .medisync-blue { color: #00bfae !important; }
html[data-theme="dark"] .medisync-green { color: #00e676 !important; }
html[data-theme="dark"] .medisync-purple { color: #a385ff !important; }
/* Make sure all gradio labels and text are visible */
label, .gr-label, .gr-text, .gr-html, .gr-markdown {
color: var(--body-text-color, #222) !important;
}
html[data-theme="dark"] label, html[data-theme="dark"] .gr-label, html[data-theme="dark"] .gr-text, html[data-theme="dark"] .gr-html, html[data-theme="dark"] .gr-markdown {
color: #f8fafc !important;
}
/* Force all text in medisync-card and status outputs to be visible in all themes */
.medisync-force-text, .medisync-force-text * {
color: var(--body-text-color, #222) !important;
}
html[data-theme="dark"] .medisync-force-text, html[data-theme="dark"] .medisync-force-text * {
color: #f8fafc !important;
}
/* End consultation status output: remove color and theme, keep text black and simple */
#end_consultation_status, #end_consultation_status * {
color: #000 !important;
background: #fff !important;
font-size: 1.12rem !important;
font-weight: 600 !important;
}
/* Style the buttons inside the end consultation status popup */
#end_consultation_status button {
font-size: 1rem !important;
font-weight: 600 !important;
border-radius: 6px !important;
padding: 8px 18px !important;
margin-top: 8px !important;
margin-bottom: 4px !important;
min-width: 120px !important;
min-height: 36px !important;
box-shadow: 0 1.5px 4px 0 rgba(0,191,174,0.08);
}
#end_consultation_status button:active, #end_consultation_status button:focus {
outline: 2px solid #00bfae !important;
}
#end_consultation_status .btn-green {
background-color: #00bfae !important;
color: #fff !important;
}
#end_consultation_status .btn-purple {
background-color: #6c63ff !important;
color: #fff !important;
}
#end_consultation_status .btn-dark {
background-color: #23272f !important;
color: #fff !important;
}
#end_consultation_status .btn-orange {
background-color: #ff9800 !important;
color: #fff !important;
}
#end_consultation_status .btn-red {
background-color: #dc3545 !important;
color: #fff !important;
}
"""
) as interface:
gr.Markdown(
"""
<div style="margin-bottom: 0.5em;">
<span style="font-size: 2.4rem; font-weight: bold; letter-spacing: 1.5px;">
<b>MediSync</b>
</span>
</div>
<div style="font-size: 1.22rem; margin-bottom: 1.2em; font-weight: 600;">
<span>AI-powered Multi-Modal Medical Analysis System</span>
</div>
<div style="font-size: 1.09rem; margin-bottom: 1.2em;">
<span>Seamlessly analyze X-ray images and medical reports for comprehensive healthcare insights.</span>
</div>
<div style="margin-bottom: 1.2em;">
<ul style="font-size: 1.04rem;">
<li>Upload a chest X-ray image</li>
<li>Enter the corresponding medical report text</li>
<li>Choose the analysis type: <b>Image</b>, <b>Text</b>, or <b>Multimodal</b></li>
<li>Click <b>End Consultation</b> to complete your appointment</li>
</ul>
</div>
""",
elem_id="medisync-header"
)
# --- BRUTAL FIX: Always set appointment id from URL using JS, forcibly, and keep it in sync ---
with gr.Row():
appointment_id_input = gr.Textbox(
label="Appointment ID",
placeholder="Enter your appointment ID here...",
info="This will be automatically populated if you came from the doctors page",
value="",
elem_id="appointment_id_input"
)
# Populate appointment id from URL on initial load using server-side request (robust, no JS dependency)
def _populate_appointment_id_on_load(request: gr.Request):
try:
params = getattr(request, "query_params", {}) or {}
appointment_id = params.get("appointment_id", "")
if appointment_id:
return gr.update(value=appointment_id)
return gr.update()
except Exception as e:
logger.warning(f"Could not populate appointment_id from URL: {e}")
return gr.update()
with gr.Tab("🧬 Multimodal Analysis"):
with gr.Row():
with gr.Column():
multi_img_input = gr.Image(label="Upload X-ray Image", type="pil", elem_id="multi_img_input")
multi_img_enhance = gr.Button("Enhance Image")
multi_text_input = gr.Textbox(
label="Enter Medical Report Text",
placeholder="Enter the radiologist's report text here...",
lines=10,
value=example_report if sample_image_path is None else None,
elem_id="multi_text_input"
)
multi_analyze_btn = gr.Button("Analyze Image & Text", variant="primary")
with gr.Column():
multi_results = gr.HTML(label="Analysis Results", elem_id="multi_results")
multi_plot = gr.HTML(label="Visualization", elem_id="multi_plot")
if sample_image_path:
gr.Examples(
examples=[[sample_image_path, example_report]],
inputs=[multi_img_input, multi_text_input],
label="Example X-ray and Report",
)
with gr.Tab("🖼️ Image Analysis"):
with gr.Row():
with gr.Column():
img_input = gr.Image(label="Upload X-ray Image", type="pil", elem_id="img_input")
img_enhance = gr.Button("Enhance Image")
img_analyze_btn = gr.Button("Analyze Image", variant="primary")
with gr.Column():
img_output = gr.Image(label="Processed Image", elem_id="img_output")
img_results = gr.HTML(label="Analysis Results", elem_id="img_results")
img_plot = gr.HTML(label="Visualization", elem_id="img_plot")
if sample_image_path:
gr.Examples(
examples=[[sample_image_path]],
inputs=[img_input],
label="Example X-ray Image",
)
with gr.Tab("📝 Text Analysis"):
with gr.Row():
with gr.Column():
text_input = gr.Textbox(
label="Enter Medical Report Text",
placeholder="Enter the radiologist's report text here...",
lines=10,
value=example_report,
elem_id="text_input"
)
text_analyze_btn = gr.Button("Analyze Text", variant="primary")
with gr.Column():
text_output = gr.Textbox(label="Processed Text", elem_id="text_output")
text_results = gr.HTML(label="Analysis Results", elem_id="text_results")
text_plot = gr.HTML(label="Entity Visualization", elem_id="text_plot")
gr.Examples(
examples=[[example_report]],
inputs=[text_input],
label="Example Medical Report",
)
with gr.Row():
with gr.Column():
end_consultation_btn = gr.Button(
"End Consultation",
variant="stop",
size="lg",
elem_classes=["end-consultation-btn"]
)
end_consultation_status = gr.HTML(label="Status", elem_id="end_consultation_status")
with gr.Tab("ℹ️ About"):
gr.Markdown(
"""
<div class="medisync-card medisync-card-bg medisync-force-text">
<h2 class="medisync-title medisync-blue">
<b>About MediSync</b>
</h2>
<p>
<b>MediSync</b> is an AI-powered healthcare solution that uses multi-modal analysis to provide comprehensive insights from medical images and reports.
</p>
<h3>Key Features</h3>
<ul>
<li><b>X-ray Image Analysis</b>: Detects abnormalities in chest X-rays using pre-trained vision models</li>
<li><b>Medical Report Processing</b>: Extracts key information from patient reports using NLP models</li>
<li><b>Multi-modal Integration</b>: Combines insights from both image and text data for more accurate analysis</li>
</ul>
<h3>Models Used</h3>
<ul>
<li><b>X-ray Analysis</b>: facebook/deit-base-patch16-224-medical-cxr</li>
<li><b>Medical Text Analysis</b>: medicalai/ClinicalBERT</li>
</ul>
<h3 style="color:#dc3545;">Important Disclaimer</h3>
<p>
This tool is for educational and research purposes only. It is not intended to provide medical advice or replace professional healthcare. Always consult with qualified healthcare providers for medical decisions.
</p>
</div>
"""
)
# Event handlers
multi_img_enhance.click(
app.enhance_image, inputs=multi_img_input, outputs=multi_img_input
)
multi_analyze_btn.click(
app.analyze_multimodal,
inputs=[multi_img_input, multi_text_input],
outputs=[multi_results, multi_plot],
)
img_enhance.click(app.enhance_image, inputs=img_input, outputs=img_output)
img_analyze_btn.click(
app.analyze_image,
inputs=img_input,
outputs=[img_output, img_results, img_plot],
)
text_analyze_btn.click(
app.analyze_text,
inputs=text_input,
outputs=[text_output, text_results, text_plot],
)
def handle_end_consultation(appointment_id):
# Output status: styled with color for buttons and clear status box, as per template
if not appointment_id or appointment_id.strip() == "":
return "<div style='color: #000; background: #fff; padding: 10px; border-radius: 5px;'>Please enter your appointment ID first.</div>"
result = complete_appointment(appointment_id.strip())
if result["status"] == "success":
doctors_urls = get_doctors_page_urls()
html_response = f"""
<div style='color: #000; background: #fff; padding: 15px; border-radius: 5px; margin: 10px 0;'>
<h3 style="color: #28a745;">✅ Consultation Completed Successfully!</h3>
<p style="color: #28a745;">✔️ {result['message']}</p>
<p>Your appointment has been marked as completed.</p>
<button class="btn-green" onclick="window.open('{doctors_urls['local']}', '_blank')"
style="margin-top: 10px;">
Return to Doctors Page (Local)
</button>
<button class="btn-purple" onclick="window.open('{doctors_urls['production']}', '_blank')"
style="margin-top: 10px; margin-left: 10px;">
Return to Doctors Page (Production)
</button>
</div>
"""
else:
if "Cannot connect to Flask app" in result['message']:
html_response = f"""
<div style='color: #000; background: #fff; padding: 15px; border-radius: 5px; margin: 10px 0;'>
<h3 style="color: #ff9800;">⚠️ Consultation Ready to Complete</h3>
<p>Your consultation analysis is complete! However, we cannot automatically mark your appointment as completed because the Flask app is not accessible from this environment.</p>
<p><strong>Appointment ID:</strong> {appointment_id.strip()}</p>
<p><strong>Next Steps:</strong></p>
<ol>
<li>Copy your appointment ID: <code>{appointment_id.strip()}</code></li>
<li>Return to your Flask app (doctors page)</li>
<li>Manually complete the appointment using the appointment ID</li>
</ol>
<div style="margin-top: 15px;">
<button class="btn-green" onclick="window.open('http://127.0.0.1:600/complete_appointment_manual?appointment_id={appointment_id.strip()}', '_blank')" style="margin-right: 10px;">
Complete Appointment
</button>
<button class="btn-purple" onclick="window.open('http://127.0.0.1:600/doctors', '_blank')" style="margin-right: 10px;">
Return to Doctors Page
</button>
<button class="btn-dark" onclick="navigator.clipboard.writeText('{appointment_id.strip()}')">
Copy Appointment ID
</button>
</div>
</div>
"""
else:
html_response = f"""
<div style='color: #000; background: #fff; padding: 15px; border-radius: 5px; margin: 10px 0;'>
<h3 style="color: #dc3545;">❌ Error Completing Consultation</h3>
<p>{result['message']}</p>
<p>Please try again or contact support if the problem persists.</p>
</div>
"""
return html_response
end_consultation_btn.click(
handle_end_consultation,
inputs=[appointment_id_input],
outputs=[end_consultation_status]
)
# --- Client-side fallback: update the underlying input/textarea inside the Gradio container ---
gr.HTML("""
<script>
function getUrlParameter(name) {
name = name.replace(/[[]/, '\\[').replace(/[\]]/, '\\]');
var regex = new RegExp('[\\?&]' + name + '=([^&#]*)');
var results = regex.exec(window.location.search);
return results === null ? '' : decodeURIComponent(results[1].replace(/\\+/g, ' '));
}
function setAppointmentIdFallback() {
var appointmentId = getUrlParameter('appointment_id');
var container = document.getElementById('appointment_id_input');
if (!container || !appointmentId) return;
var input = container.querySelector('input, textarea');
if (!input && container.shadowRoot) {
input = container.shadowRoot.querySelector('input, textarea');
}
if (input && input.value !== appointmentId) {
input.value = appointmentId;
input.dispatchEvent(new Event('input', { bubbles: true }));
input.dispatchEvent(new Event('change', { bubbles: true }));
}
}
// Try to apply once on load and occasionally afterward in case Gradio re-renders
const fallbackInterval = setInterval(setAppointmentIdFallback, 1000);
window.addEventListener('DOMContentLoaded', setAppointmentIdFallback);
window.addEventListener('load', setAppointmentIdFallback);
// Stop after some time to avoid running forever (10s)
setTimeout(() => clearInterval(fallbackInterval), 10000);
</script>
""")
# Server-side load event to populate appointment id reliably
interface.load(
_populate_appointment_id_on_load,
inputs=None,
outputs=appointment_id_input
)
interface.launch()
if __name__ == "__main__":
create_interface() |