File size: 9,270 Bytes
128f42e 5e8be73 128f42e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
"""
camera_pipeline.py
Functions for simulating a realistic camera pipeline, including Bayer mosaic/demosaic,
chromatic aberration, vignette, sensor noise, hot pixels, banding, motion blur, and JPEG recompression.
"""
from io import BytesIO
from PIL import Image
import numpy as np
try:
import cv2
_HAS_CV2 = True
except Exception:
cv2 = None
_HAS_CV2 = False
from scipy.ndimage import convolve
def _bayer_mosaic(img: np.ndarray, pattern='RGGB') -> np.ndarray:
"""Create a single-channel Bayer mosaic from an RGB image.
pattern currently supports 'RGGB' (most common). Returns uint8 2D array.
"""
h, w = img.shape[:2]
mosaic = np.zeros((h, w), dtype=np.uint8)
# pattern mapping for RGGB:
# (0,0) R, (0,1) G
# (1,0) G, (1,1) B
R = img[:, :, 0]
G = img[:, :, 1]
B = img[:, :, 2]
# fill mosaic according to RGGB
mosaic[0::2, 0::2] = R[0::2, 0::2]
mosaic[0::2, 1::2] = G[0::2, 1::2]
mosaic[1::2, 0::2] = G[1::2, 0::2]
mosaic[1::2, 1::2] = B[1::2, 1::2]
return mosaic
def _demosaic_bilinear(mosaic: np.ndarray) -> np.ndarray:
"""Simple bilinear demosaic fallback (no cv2). Outputs RGB uint8 image.
Not perfect but good enough to add demosaic artifacts.
"""
h, w = mosaic.shape
# Work in float to avoid overflow
m = mosaic.astype(np.float32)
# We'll compute each channel by averaging available mosaic samples
R = np.zeros_like(m)
G = np.zeros_like(m)
B = np.zeros_like(m)
# RGGB pattern
R[0::2, 0::2] = m[0::2, 0::2]
G[0::2, 1::2] = m[0::2, 1::2]
G[1::2, 0::2] = m[1::2, 0::2]
B[1::2, 1::2] = m[1::2, 1::2]
# Convolution kernels for interpolation (simple)
k_cross = np.array([[0, 1, 0], [1, 4, 1], [0, 1, 0]], dtype=np.float32) / 8.0
k_diag = np.array([[1, 0, 1], [0, 0, 0], [1, 0, 1]], dtype=np.float32) / 4.0
# convolve using scipy.ndimage.convolve
R_interp = convolve(R, k_cross, mode='mirror')
G_interp = convolve(G, k_cross, mode='mirror')
B_interp = convolve(B, k_cross, mode='mirror')
out = np.stack((R_interp, G_interp, B_interp), axis=2)
out = np.clip(out, 0, 255).astype(np.uint8)
return out
def _apply_chromatic_aberration(img: np.ndarray, strength=1.0, seed=None):
"""Shift R and B channels slightly in opposite directions to emulate CA.
strength is in pixels (float). Uses cv2.warpAffine if available; integer
fallback uses np.roll.
"""
if seed is not None:
rng = np.random.default_rng(seed)
else:
rng = np.random.default_rng()
h, w = img.shape[:2]
max_shift = max(1.0, strength)
# small random subpixel shift sampled from normal distribution
shift_r = rng.normal(loc=0.0, scale=max_shift * 0.6)
shift_b = rng.normal(loc=0.0, scale=max_shift * 0.6)
# apply opposite horizontal shifts to R and B for lateral CA
r_x = shift_r
r_y = rng.normal(scale=0.3 * abs(shift_r))
b_x = -shift_b
b_y = rng.normal(scale=0.3 * abs(shift_b))
out = img.copy().astype(np.float32)
if _HAS_CV2:
def warp_channel(ch, tx, ty):
M = np.array([[1, 0, tx], [0, 1, ty]], dtype=np.float32)
return cv2.warpAffine(ch, M, (w, h), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REFLECT)
out[:, :, 0] = warp_channel(out[:, :, 0], r_x, r_y)
out[:, :, 2] = warp_channel(out[:, :, 2], b_x, b_y)
else:
# integer fallback
ix_r = int(round(r_x))
iy_r = int(round(r_y))
ix_b = int(round(b_x))
iy_b = int(round(b_y))
out[:, :, 0] = np.roll(out[:, :, 0], shift=(iy_r, ix_r), axis=(0, 1))
out[:, :, 2] = np.roll(out[:, :, 2], shift=(iy_b, ix_b), axis=(0, 1))
out = np.clip(out, 0, 255).astype(np.uint8)
return out
def _apply_vignette(img: np.ndarray, strength=0.4):
h, w = img.shape[:2]
y = np.linspace(-1, 1, h)[:, None]
x = np.linspace(-1, 1, w)[None, :]
r = np.sqrt(x * x + y * y)
mask = 1.0 - (r ** 2) * strength
mask = np.clip(mask, 0.0, 1.0)
out = (img.astype(np.float32) * mask[:, :, None])
out = np.clip(out, 0, 255).astype(np.uint8)
return out
def _add_poisson_gaussian_noise(img: np.ndarray, iso_scale=1.0, read_noise_std=2.0, seed=None):
"""Poisson-Gaussian sensor noise model.
iso_scale scales the signal before Poisson sampling (higher -> more Poisson),
read_noise_std is the sigma (in DN) of additive Gaussian read noise.
"""
if seed is not None:
rng = np.random.default_rng(seed)
else:
rng = np.random.default_rng()
img_f = img.astype(np.float32)
# scale to simulate exposure/iso
scaled = img_f * iso_scale
# Poisson: we need integer counts; scale to a reasonable photon budget
# choose scale so that typical pixel values map to ~[0..2000] photons
photon_scale = 4.0
lam = np.clip(scaled * photon_scale, 0, 1e6)
noisy = rng.poisson(lam).astype(np.float32) / photon_scale
# add read noise
noisy += rng.normal(loc=0.0, scale=read_noise_std, size=noisy.shape)
noisy = np.clip(noisy, 0, 255).astype(np.uint8)
return noisy
def _add_hot_pixels_and_banding(img: np.ndarray, hot_pixel_prob=1e-6, banding_strength=0.0, seed=None):
if seed is not None:
rng = np.random.default_rng(seed)
else:
rng = np.random.default_rng()
h, w = img.shape[:2]
out = img.copy().astype(np.float32)
# hot pixels
n_pixels = int(h * w * hot_pixel_prob)
if n_pixels > 0:
ys = rng.integers(0, h, size=n_pixels)
xs = rng.integers(0, w, size=n_pixels)
vals = rng.integers(200, 256, size=n_pixels)
for y, x, v in zip(ys, xs, vals):
out[y, x, :] = v
# banding: add low-amplitude sinusoidal horizontal banding
if banding_strength > 0.0:
rows = np.arange(h)[:, None]
band = (np.sin(rows * 0.5) * 255.0 * banding_strength)
out += band[:, :, None]
out = np.clip(out, 0, 255).astype(np.uint8)
return out
def _motion_blur(img: np.ndarray, kernel_size=5):
if kernel_size <= 1:
return img
# simple linear motion kernel horizontally
kernel = np.zeros((kernel_size, kernel_size), dtype=np.float32)
kernel[kernel_size // 2, :] = 1.0 / kernel_size
out = np.zeros_like(img)
for c in range(3):
out[:, :, c] = convolve(img[:, :, c].astype(np.float32), kernel, mode='mirror')
out = np.clip(out, 0, 255).astype(np.uint8)
return out
def _jpeg_recompress(img: np.ndarray, quality=90) -> np.ndarray:
pil = Image.fromarray(img)
buf = BytesIO()
pil.save(buf, format='JPEG', quality=int(quality), optimize=False)
buf.seek(0)
rec = Image.open(buf).convert('RGB')
return np.array(rec)
def simulate_camera_pipeline(img_arr: np.ndarray,
bayer=True,
jpeg_cycles=1,
jpeg_quality_range=(88, 96),
vignette_strength=0.35,
chroma_aberr_strength=1.2,
iso_scale=1.0,
read_noise_std=2.0,
hot_pixel_prob=1e-6,
banding_strength=0.0,
motion_blur_kernel=1,
seed=None):
"""Apply a set of realistic camera/capture artifacts to img_arr (RGB uint8).
Returns an RGB uint8 image.
"""
if seed is not None:
rng = np.random.default_rng(seed)
else:
rng = np.random.default_rng()
out = img_arr.copy()
# 1) Bayer mosaic + demosaic (if enabled)
if bayer:
try:
# Build mosaic from the RGB image (no channel reversal). Previously the code
# reversed channels here which caused R/B swapping and strong green tint.
mosaic = _bayer_mosaic(out)
if _HAS_CV2:
# cv2 expects a single-channel Bayer and provides demosaicing codes
# We'll use RGGB code (COLOR_BAYER_RG2BGR) so convert back to RGB after
dem = cv2.demosaicing(mosaic, cv2.COLOR_BAYER_RG2BGR)
# cv2 returns BGR
dem = dem[:, :, ::-1]
out = dem
else:
out = _demosaic_bilinear(mosaic)
except Exception:
# if anything fails, keep original
out = img_arr.copy()
# 2) chromatic aberration
out = _apply_chromatic_aberration(out, strength=chroma_aberr_strength, seed=seed)
# 3) vignette
out = _apply_vignette(out, strength=vignette_strength)
# 4) noise (Poisson-Gaussian)
out = _add_poisson_gaussian_noise(out, iso_scale=iso_scale, read_noise_std=read_noise_std, seed=seed)
# 5) hot pixels and banding
out = _add_hot_pixels_and_banding(out, hot_pixel_prob=hot_pixel_prob, banding_strength=banding_strength, seed=seed)
# 6) motion blur
if motion_blur_kernel and motion_blur_kernel > 1:
out = _motion_blur(out, kernel_size=motion_blur_kernel)
# 7) JPEG recompression cycles
for i in range(max(1, int(jpeg_cycles))):
q = int(rng.integers(jpeg_quality_range[0], jpeg_quality_range[1] + 1))
out = _jpeg_recompress(out, quality=q)
return out |