File size: 12,956 Bytes
4c76d26
6912dab
 
 
 
 
4c76d26
6912dab
4c76d26
6912dab
4c76d26
6912dab
 
 
 
1778b43
4c76d26
6912dab
 
4c76d26
6912dab
4c76d26
 
 
 
cdd4ab3
 
 
 
6912dab
 
 
 
8e6df85
6912dab
 
 
 
8e6df85
 
 
6912dab
8e6df85
6912dab
8e6df85
6912dab
 
 
 
8e6df85
 
 
 
 
 
 
 
 
 
 
 
 
6912dab
8e6df85
6912dab
8e6df85
 
 
 
6912dab
8e6df85
6912dab
8e6df85
 
 
 
6912dab
 
1778b43
 
6912dab
 
 
 
 
 
 
 
8e6df85
 
6912dab
 
8e6df85
6912dab
 
 
 
 
 
8e6df85
 
 
 
 
 
 
 
 
 
 
6912dab
8e6df85
6912dab
8e6df85
6912dab
cdd4ab3
8e6df85
 
 
 
 
 
 
 
 
6912dab
4c76d26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1778b43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c76d26
 
 
 
 
 
1778b43
4c76d26
 
 
1778b43
 
4c76d26
 
 
 
 
 
 
 
 
 
 
1778b43
4c76d26
 
1778b43
4c76d26
 
 
8e6df85
4c76d26
1778b43
4c76d26
 
8e6df85
 
5dc71aa
cdd4ab3
4c76d26
 
 
 
 
1778b43
4c76d26
1778b43
4c76d26
 
 
 
 
 
 
 
 
 
 
 
1778b43
 
4c76d26
 
 
 
 
 
 
 
 
 
 
 
6912dab
 
 
4c76d26
 
 
 
 
6912dab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c76d26
6912dab
 
 
 
 
 
 
4a428e5
1778b43
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import torch
from PIL import Image
import numpy as np
import os
import tempfile
from types import SimpleNamespace
from typing import Tuple
try:
    from .image_postprocess import process_image
except Exception as e:
    process_image = None
    IMPORT_ERROR = str(e)
else:
    IMPORT_ERROR = None

lut_extensions = ['png','npy','cube']

class NovaNodes:
    """
    ComfyUI node: Full post-processing chain using process_image from image_postprocess
    All augmentations with tunable parameters.

    NOTE: Adjusted to match FOOLAI output:
      - Returns an IMAGE as a single PyTorch tensor shaped (1, H, W, C), dtype=float32, values in [0.0, 1.0].
      - Returns EXIF as a STRING (second output slot).

    Added LUT support: two new node inputs:
      - lut: STRING path to a LUT file (1D PNG 256x1, .npy, or .cube). Empty string -> disabled.
      - lut_strength: FLOAT blend strength (0.0..1.0)
    """

    @classmethod
    def INPUT_TYPES(s):
        # --- MODIFICATION: Rearranged inputs and updated defaults to match the reference image ---
        return {
            "required": {
                "image": ("IMAGE",),

                # Parameters (Manual Mode) - Order and defaults match the image
                "noise_std_frac": ("FLOAT", {"default": 0.02, "min": 0.0, "max": 0.1, "step": 0.001}),
                "clahe_clip": ("FLOAT", {"default": 2.00, "min": 0.5, "max": 10.0, "step": 0.1}),
                "clahe_grid": ("INT", {"default": 8, "min": 2, "max": 32, "step": 1}),
                "fourier_cutoff": ("FLOAT", {"default": 0.25, "min": 0.0, "max": 1.0, "step": 0.01}),
                "apply_fourier_o": ("BOOLEAN", {"default": True}),
                "fourier_strength": ("FLOAT", {"default": 0.90, "min": 0.0, "max": 1.0, "step": 0.01}),
                "fourier_randomness": ("FLOAT", {"default": 0.05, "min": 0.0, "max": 0.5, "step": 0.01}),
                "fourier_phase_perturb": ("FLOAT", {"default": 0.08, "min": 0.0, "max": 0.5, "step": 0.01}),
                "fourier_radial_smooth": ("INT", {"default": 5, "min": 0, "max": 50, "step": 1}),
                "fourier_mode": (["auto", "ref", "model"], {"default": "auto"}),
                "fourier_alpha": ("FLOAT", {"default": 1.00, "min": 0.1, "max": 4.0, "step": 0.1}),
                "perturb_mag_frac": ("FLOAT", {"default": 0.01, "min": 0.0, "max": 0.05, "step": 0.001}),
                "enable_awb": ("BOOLEAN", {"default": True}),
                "sim_camera": ("BOOLEAN", {"default": True}), # This corresponds to "Enable camera pipeline simulation"
                "enable_lut": ("BOOLEAN", {"default": True}),
                "lut": ("STRING", {"default": "X://insert/path/here(.png/.npy/.cube)", "vhs_path_extensions": lut_extensions}),
                "lut_strength": ("FLOAT", {"default": 1.00, "min": 0.0, "max": 1.0, "step": 0.01}),
                
                # Camera simulator options - Order and defaults match the image
                "enable_bayer": ("BOOLEAN", {"default": True}),
                "apply_jpeg_cycles_o": ("BOOLEAN", {"default": True}),
                "jpeg_cycles": ("INT", {"default": 1, "min": 1, "max": 10, "step": 1}),
                "jpeg_quality": ("INT", {"default": 88, "min": 10, "max": 100, "step": 1}),
                "apply_vignette_o": ("BOOLEAN", {"default": True}),
                "vignette_strength": ("FLOAT", {"default": 0.35, "min": 0.0, "max": 1.0, "step": 0.01}),
                "apply_chromatic_aberration_o": ("BOOLEAN", {"default": True}),
                "ca_shift": ("FLOAT", {"default": 1.20, "min": 0.0, "max": 5.0, "step": 0.1}),
                "iso_scale": ("FLOAT", {"default": 1.00, "min": 0.1, "max": 16.0, "step": 0.1}),
                "read_noise": ("FLOAT", {"default": 2.00, "min": 0.0, "max": 50.0, "step": 0.1}),
                "hot_pixel_prob": ("FLOAT", {"default": 1e-7, "min": 0.0, "max": 1e-3, "step": 1e-7}),
                "apply_banding_o": ("BOOLEAN", {"default": True}),
                "banding_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                "apply_motion_blur_o": ("BOOLEAN", {"default": True}),
                "motion_blur_ksize": ("INT", {"default": 1, "min": 1, "max": 31, "step": 2}),
                
                # Other options
                "apply_exif_o": ("BOOLEAN", {"default": True}),
            },
            "optional": {
                "awb_ref_image": ("IMAGE",),
                "fft_ref_image": ("IMAGE",),
            }
        }

    RETURN_TYPES = ("IMAGE", "STRING")
    RETURN_NAMES = ("IMAGE", "EXIF")
    FUNCTION = "process"
    CATEGORY = "postprocessing"

    def process(self, image, 
                noise_std_frac=0.02,
                clahe_clip=2.0,
                clahe_grid=8,
                fourier_cutoff=0.25,
                apply_fourier_o=True,
                fourier_strength=0.9,
                fourier_randomness=0.05,
                fourier_phase_perturb=0.08,
                fourier_radial_smooth=5,
                fourier_mode="auto",
                fourier_alpha=1.0,
                perturb_mag_frac=0.01,
                enable_awb=True,
                sim_camera=True,
                enable_lut=True,
                lut="",
                lut_strength=1.0,
                enable_bayer=True,
                apply_jpeg_cycles_o=True,
                jpeg_cycles=1,
                jpeg_quality=88,
                apply_vignette_o=True,
                vignette_strength=0.35,
                apply_chromatic_aberration_o=True,
                ca_shift=1.20,
                iso_scale=1.0,
                read_noise=2.0,
                hot_pixel_prob=1e-7,
                apply_banding_o=True,
                banding_strength=0.0,
                apply_motion_blur_o=True,
                motion_blur_ksize=1,
                apply_exif_o=True,
                awb_ref_image=None, 
                fft_ref_image=None
                ):

        if process_image is None:
            raise ImportError(f"Could not import process_image function: {IMPORT_ERROR}")

        tmp_files = []

        def to_pil_from_any(inp):
            """Convert a torch tensor / numpy array of many shapes into a PIL RGB Image."""
            if isinstance(inp, torch.Tensor):
                arr = inp.detach().cpu().numpy()
            else:
                arr = np.asarray(inp)
            if arr.ndim == 4 and arr.shape[0] == 1:
                arr = arr[0]
            if arr.ndim == 3 and arr.shape[0] in (1, 3):
                arr = np.transpose(arr, (1, 2, 0))
            if arr.ndim == 2:
                arr = arr[:, :, None]
            if arr.ndim != 3:
                raise TypeError(f"Cannot convert array to HWC image, final ndim={arr.ndim}, shape={arr.shape}")
            if np.issubdtype(arr.dtype, np.floating):
                if arr.max() <= 1.0:
                    arr = (arr * 255.0).clip(0, 255).astype(np.uint8)
                else:
                    arr = np.clip(arr, 0, 255).astype(np.uint8)
            else:
                arr = arr.astype(np.uint8)
            if arr.shape[2] == 1:
                arr = np.repeat(arr, 3, axis=2)
            return Image.fromarray(arr)

        try:
            # ---- Input image -> temporary input file ----
            pil_img = to_pil_from_any(image[0])
            with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_input:
                input_path = tmp_input.name
                pil_img.save(input_path)
                tmp_files.append(input_path)

            # ---- AWB reference image if present ----
            awb_ref_path = None
            if awb_ref_image is not None:
                pil_ref_awb = to_pil_from_any(awb_ref_image[0])
                with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_ref_awb:
                    awb_ref_path = tmp_ref_awb.name
                    pil_ref_awb.save(awb_ref_path)
                    tmp_files.append(awb_ref_path)

            # ---- FFT reference image if present ----
            fft_ref_path = None
            if fft_ref_image is not None:
                pil_ref_fft = to_pil_from_any(fft_ref_image[0])
                with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_ref_fft:
                    fft_ref_path = tmp_ref_fft.name
                    pil_ref_fft.save(fft_ref_path)
                    tmp_files.append(fft_ref_path)

            # ---- Output path ----
            with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as tmp_output:
                output_path = tmp_output.name
                tmp_files.append(output_path)

            # Prepare args for process_image
            args = SimpleNamespace(
                input=input_path,
                output=output_path,
                awb=enable_awb, # Explicit AWB flag
                ref=awb_ref_path,
                noise_std=noise_std_frac,
                hot_pixel_prob=hot_pixel_prob,
                perturb=perturb_mag_frac,
                clahe_clip=clahe_clip,
                tile=clahe_grid,
                fstrength=fourier_strength if apply_fourier_o else 0.0,
                randomness=fourier_randomness,
                phase_perturb=fourier_phase_perturb,
                fft_alpha=fourier_alpha,
                radial_smooth=fourier_radial_smooth,
                fft_mode=fourier_mode,
                fft_ref=fft_ref_path,
                vignette_strength=vignette_strength if apply_vignette_o else 0.0,
                chroma_strength=ca_shift if apply_chromatic_aberration_o else 0.0,
                banding_strength=banding_strength if apply_banding_o else 0.0,
                motion_blur_kernel=motion_blur_ksize if apply_motion_blur_o else 1,
                jpeg_cycles=jpeg_cycles if apply_jpeg_cycles_o else 1,
                jpeg_qmin=jpeg_quality,
                jpeg_qmax=96, # As per image range
                sim_camera=sim_camera,
                no_no_bayer=not enable_bayer, # FIX: Inverted logic corrected
                iso_scale=iso_scale,
                read_noise=read_noise,
                seed=None, # Seed is not user-configurable in this version
                cutoff=fourier_cutoff,
                lut=(lut if enable_lut and lut != "" else None),
                lut_strength=lut_strength,
            )

            # ---- Run the processing function ----
            process_image(input_path, output_path, args)

            # ---- Load result (force RGB) ----
            output_img = Image.open(output_path).convert("RGB")
            img_out = np.array(output_img)

            # ---- EXIF insertion (optional) ----
            new_exif = ""
            if apply_exif_o:
                try:
                    output_img_with_exif, new_exif = self._add_fake_exif(output_img)
                    output_img = output_img_with_exif
                    img_out = np.array(output_img.convert("RGB"))
                except Exception:
                    new_exif = ""

            # ---- Convert to FOOLAI-style tensor: (1, H, W, C), float32 in [0,1] ----
            img_float = img_out.astype(np.float32) / 255.0
            tensor_out = torch.from_numpy(img_float).to(dtype=torch.float32).unsqueeze(0)
            tensor_out = torch.clamp(tensor_out, 0.0, 1.0)

            return (tensor_out, new_exif)

        finally:
            for p in tmp_files:
                try:
                    os.unlink(p)
                except Exception:
                    pass

    def _add_fake_exif(self, img: Image.Image) -> Tuple[Image.Image, str]:
        """Insert random but realistic camera EXIF metadata."""
        import random
        import io
        try:
            import piexif
        except Exception:
            raise

        exif_dict = {
            "0th": {
                piexif.ImageIFD.Make: random.choice(["Canon", "Nikon", "Sony", "Fujifilm", "Olympus", "Leica"]),
                piexif.ImageIFD.Model: random.choice([
                    "EOS 5D Mark III", "D850", "Alpha 7R IV", "X-T4", "OM-D E-M1 Mark III", "Q2"
                ]),
                piexif.ImageIFD.Software: "Adobe Lightroom",
            },
            "Exif": {
                piexif.ExifIFD.FNumber: (random.randint(10, 22), 10),
                piexif.ExifIFD.ExposureTime: (1, random.randint(60, 4000)),
                piexif.ExifIFD.ISOSpeedRatings: random.choice([100, 200, 400, 800, 1600, 3200]),
                piexif.ExifIFD.FocalLength: (random.randint(24, 200), 1),
            },
        }
        exif_bytes = piexif.dump(exif_dict)
        output = io.BytesIO()
        img.save(output, format="JPEG", exif=exif_bytes)
        output.seek(0)
        return (Image.open(output), str(exif_bytes))


# -------------
#  Registration
# -------------
NODE_CLASS_MAPPINGS = {
    "NovaNodes": NovaNodes,
}
NODE_DISPLAY_NAME_MAPPINGS = {
    "NovaNodes": "Image Postprocess (NOVA NODES)",
}