File size: 12,956 Bytes
4c76d26 6912dab 4c76d26 6912dab 4c76d26 6912dab 4c76d26 6912dab 1778b43 4c76d26 6912dab 4c76d26 6912dab 4c76d26 cdd4ab3 6912dab 8e6df85 6912dab 8e6df85 6912dab 8e6df85 6912dab 8e6df85 6912dab 8e6df85 6912dab 8e6df85 6912dab 8e6df85 6912dab 8e6df85 6912dab 8e6df85 6912dab 1778b43 6912dab 8e6df85 6912dab 8e6df85 6912dab 8e6df85 6912dab 8e6df85 6912dab 8e6df85 6912dab cdd4ab3 8e6df85 6912dab 4c76d26 1778b43 4c76d26 1778b43 4c76d26 1778b43 4c76d26 1778b43 4c76d26 1778b43 4c76d26 8e6df85 4c76d26 1778b43 4c76d26 8e6df85 5dc71aa cdd4ab3 4c76d26 1778b43 4c76d26 1778b43 4c76d26 1778b43 4c76d26 6912dab 4c76d26 6912dab 4c76d26 6912dab 4a428e5 1778b43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
import torch
from PIL import Image
import numpy as np
import os
import tempfile
from types import SimpleNamespace
from typing import Tuple
try:
from .image_postprocess import process_image
except Exception as e:
process_image = None
IMPORT_ERROR = str(e)
else:
IMPORT_ERROR = None
lut_extensions = ['png','npy','cube']
class NovaNodes:
"""
ComfyUI node: Full post-processing chain using process_image from image_postprocess
All augmentations with tunable parameters.
NOTE: Adjusted to match FOOLAI output:
- Returns an IMAGE as a single PyTorch tensor shaped (1, H, W, C), dtype=float32, values in [0.0, 1.0].
- Returns EXIF as a STRING (second output slot).
Added LUT support: two new node inputs:
- lut: STRING path to a LUT file (1D PNG 256x1, .npy, or .cube). Empty string -> disabled.
- lut_strength: FLOAT blend strength (0.0..1.0)
"""
@classmethod
def INPUT_TYPES(s):
# --- MODIFICATION: Rearranged inputs and updated defaults to match the reference image ---
return {
"required": {
"image": ("IMAGE",),
# Parameters (Manual Mode) - Order and defaults match the image
"noise_std_frac": ("FLOAT", {"default": 0.02, "min": 0.0, "max": 0.1, "step": 0.001}),
"clahe_clip": ("FLOAT", {"default": 2.00, "min": 0.5, "max": 10.0, "step": 0.1}),
"clahe_grid": ("INT", {"default": 8, "min": 2, "max": 32, "step": 1}),
"fourier_cutoff": ("FLOAT", {"default": 0.25, "min": 0.0, "max": 1.0, "step": 0.01}),
"apply_fourier_o": ("BOOLEAN", {"default": True}),
"fourier_strength": ("FLOAT", {"default": 0.90, "min": 0.0, "max": 1.0, "step": 0.01}),
"fourier_randomness": ("FLOAT", {"default": 0.05, "min": 0.0, "max": 0.5, "step": 0.01}),
"fourier_phase_perturb": ("FLOAT", {"default": 0.08, "min": 0.0, "max": 0.5, "step": 0.01}),
"fourier_radial_smooth": ("INT", {"default": 5, "min": 0, "max": 50, "step": 1}),
"fourier_mode": (["auto", "ref", "model"], {"default": "auto"}),
"fourier_alpha": ("FLOAT", {"default": 1.00, "min": 0.1, "max": 4.0, "step": 0.1}),
"perturb_mag_frac": ("FLOAT", {"default": 0.01, "min": 0.0, "max": 0.05, "step": 0.001}),
"enable_awb": ("BOOLEAN", {"default": True}),
"sim_camera": ("BOOLEAN", {"default": True}), # This corresponds to "Enable camera pipeline simulation"
"enable_lut": ("BOOLEAN", {"default": True}),
"lut": ("STRING", {"default": "X://insert/path/here(.png/.npy/.cube)", "vhs_path_extensions": lut_extensions}),
"lut_strength": ("FLOAT", {"default": 1.00, "min": 0.0, "max": 1.0, "step": 0.01}),
# Camera simulator options - Order and defaults match the image
"enable_bayer": ("BOOLEAN", {"default": True}),
"apply_jpeg_cycles_o": ("BOOLEAN", {"default": True}),
"jpeg_cycles": ("INT", {"default": 1, "min": 1, "max": 10, "step": 1}),
"jpeg_quality": ("INT", {"default": 88, "min": 10, "max": 100, "step": 1}),
"apply_vignette_o": ("BOOLEAN", {"default": True}),
"vignette_strength": ("FLOAT", {"default": 0.35, "min": 0.0, "max": 1.0, "step": 0.01}),
"apply_chromatic_aberration_o": ("BOOLEAN", {"default": True}),
"ca_shift": ("FLOAT", {"default": 1.20, "min": 0.0, "max": 5.0, "step": 0.1}),
"iso_scale": ("FLOAT", {"default": 1.00, "min": 0.1, "max": 16.0, "step": 0.1}),
"read_noise": ("FLOAT", {"default": 2.00, "min": 0.0, "max": 50.0, "step": 0.1}),
"hot_pixel_prob": ("FLOAT", {"default": 1e-7, "min": 0.0, "max": 1e-3, "step": 1e-7}),
"apply_banding_o": ("BOOLEAN", {"default": True}),
"banding_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
"apply_motion_blur_o": ("BOOLEAN", {"default": True}),
"motion_blur_ksize": ("INT", {"default": 1, "min": 1, "max": 31, "step": 2}),
# Other options
"apply_exif_o": ("BOOLEAN", {"default": True}),
},
"optional": {
"awb_ref_image": ("IMAGE",),
"fft_ref_image": ("IMAGE",),
}
}
RETURN_TYPES = ("IMAGE", "STRING")
RETURN_NAMES = ("IMAGE", "EXIF")
FUNCTION = "process"
CATEGORY = "postprocessing"
def process(self, image,
noise_std_frac=0.02,
clahe_clip=2.0,
clahe_grid=8,
fourier_cutoff=0.25,
apply_fourier_o=True,
fourier_strength=0.9,
fourier_randomness=0.05,
fourier_phase_perturb=0.08,
fourier_radial_smooth=5,
fourier_mode="auto",
fourier_alpha=1.0,
perturb_mag_frac=0.01,
enable_awb=True,
sim_camera=True,
enable_lut=True,
lut="",
lut_strength=1.0,
enable_bayer=True,
apply_jpeg_cycles_o=True,
jpeg_cycles=1,
jpeg_quality=88,
apply_vignette_o=True,
vignette_strength=0.35,
apply_chromatic_aberration_o=True,
ca_shift=1.20,
iso_scale=1.0,
read_noise=2.0,
hot_pixel_prob=1e-7,
apply_banding_o=True,
banding_strength=0.0,
apply_motion_blur_o=True,
motion_blur_ksize=1,
apply_exif_o=True,
awb_ref_image=None,
fft_ref_image=None
):
if process_image is None:
raise ImportError(f"Could not import process_image function: {IMPORT_ERROR}")
tmp_files = []
def to_pil_from_any(inp):
"""Convert a torch tensor / numpy array of many shapes into a PIL RGB Image."""
if isinstance(inp, torch.Tensor):
arr = inp.detach().cpu().numpy()
else:
arr = np.asarray(inp)
if arr.ndim == 4 and arr.shape[0] == 1:
arr = arr[0]
if arr.ndim == 3 and arr.shape[0] in (1, 3):
arr = np.transpose(arr, (1, 2, 0))
if arr.ndim == 2:
arr = arr[:, :, None]
if arr.ndim != 3:
raise TypeError(f"Cannot convert array to HWC image, final ndim={arr.ndim}, shape={arr.shape}")
if np.issubdtype(arr.dtype, np.floating):
if arr.max() <= 1.0:
arr = (arr * 255.0).clip(0, 255).astype(np.uint8)
else:
arr = np.clip(arr, 0, 255).astype(np.uint8)
else:
arr = arr.astype(np.uint8)
if arr.shape[2] == 1:
arr = np.repeat(arr, 3, axis=2)
return Image.fromarray(arr)
try:
# ---- Input image -> temporary input file ----
pil_img = to_pil_from_any(image[0])
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_input:
input_path = tmp_input.name
pil_img.save(input_path)
tmp_files.append(input_path)
# ---- AWB reference image if present ----
awb_ref_path = None
if awb_ref_image is not None:
pil_ref_awb = to_pil_from_any(awb_ref_image[0])
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_ref_awb:
awb_ref_path = tmp_ref_awb.name
pil_ref_awb.save(awb_ref_path)
tmp_files.append(awb_ref_path)
# ---- FFT reference image if present ----
fft_ref_path = None
if fft_ref_image is not None:
pil_ref_fft = to_pil_from_any(fft_ref_image[0])
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_ref_fft:
fft_ref_path = tmp_ref_fft.name
pil_ref_fft.save(fft_ref_path)
tmp_files.append(fft_ref_path)
# ---- Output path ----
with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as tmp_output:
output_path = tmp_output.name
tmp_files.append(output_path)
# Prepare args for process_image
args = SimpleNamespace(
input=input_path,
output=output_path,
awb=enable_awb, # Explicit AWB flag
ref=awb_ref_path,
noise_std=noise_std_frac,
hot_pixel_prob=hot_pixel_prob,
perturb=perturb_mag_frac,
clahe_clip=clahe_clip,
tile=clahe_grid,
fstrength=fourier_strength if apply_fourier_o else 0.0,
randomness=fourier_randomness,
phase_perturb=fourier_phase_perturb,
fft_alpha=fourier_alpha,
radial_smooth=fourier_radial_smooth,
fft_mode=fourier_mode,
fft_ref=fft_ref_path,
vignette_strength=vignette_strength if apply_vignette_o else 0.0,
chroma_strength=ca_shift if apply_chromatic_aberration_o else 0.0,
banding_strength=banding_strength if apply_banding_o else 0.0,
motion_blur_kernel=motion_blur_ksize if apply_motion_blur_o else 1,
jpeg_cycles=jpeg_cycles if apply_jpeg_cycles_o else 1,
jpeg_qmin=jpeg_quality,
jpeg_qmax=96, # As per image range
sim_camera=sim_camera,
no_no_bayer=not enable_bayer, # FIX: Inverted logic corrected
iso_scale=iso_scale,
read_noise=read_noise,
seed=None, # Seed is not user-configurable in this version
cutoff=fourier_cutoff,
lut=(lut if enable_lut and lut != "" else None),
lut_strength=lut_strength,
)
# ---- Run the processing function ----
process_image(input_path, output_path, args)
# ---- Load result (force RGB) ----
output_img = Image.open(output_path).convert("RGB")
img_out = np.array(output_img)
# ---- EXIF insertion (optional) ----
new_exif = ""
if apply_exif_o:
try:
output_img_with_exif, new_exif = self._add_fake_exif(output_img)
output_img = output_img_with_exif
img_out = np.array(output_img.convert("RGB"))
except Exception:
new_exif = ""
# ---- Convert to FOOLAI-style tensor: (1, H, W, C), float32 in [0,1] ----
img_float = img_out.astype(np.float32) / 255.0
tensor_out = torch.from_numpy(img_float).to(dtype=torch.float32).unsqueeze(0)
tensor_out = torch.clamp(tensor_out, 0.0, 1.0)
return (tensor_out, new_exif)
finally:
for p in tmp_files:
try:
os.unlink(p)
except Exception:
pass
def _add_fake_exif(self, img: Image.Image) -> Tuple[Image.Image, str]:
"""Insert random but realistic camera EXIF metadata."""
import random
import io
try:
import piexif
except Exception:
raise
exif_dict = {
"0th": {
piexif.ImageIFD.Make: random.choice(["Canon", "Nikon", "Sony", "Fujifilm", "Olympus", "Leica"]),
piexif.ImageIFD.Model: random.choice([
"EOS 5D Mark III", "D850", "Alpha 7R IV", "X-T4", "OM-D E-M1 Mark III", "Q2"
]),
piexif.ImageIFD.Software: "Adobe Lightroom",
},
"Exif": {
piexif.ExifIFD.FNumber: (random.randint(10, 22), 10),
piexif.ExifIFD.ExposureTime: (1, random.randint(60, 4000)),
piexif.ExifIFD.ISOSpeedRatings: random.choice([100, 200, 400, 800, 1600, 3200]),
piexif.ExifIFD.FocalLength: (random.randint(24, 200), 1),
},
}
exif_bytes = piexif.dump(exif_dict)
output = io.BytesIO()
img.save(output, format="JPEG", exif=exif_bytes)
output.seek(0)
return (Image.open(output), str(exif_bytes))
# -------------
# Registration
# -------------
NODE_CLASS_MAPPINGS = {
"NovaNodes": NovaNodes,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"NovaNodes": "Image Postprocess (NOVA NODES)",
} |