Spaces:
Build error
Build error
| import streamlit as st | |
| from langchain_core.messages import AIMessage, HumanMessage | |
| from langchain_community.document_loaders import WebBaseLoader | |
| from langchain.text_splitter import RecursiveCharacterTextSplitter | |
| from langchain_community.vectorstores import Chroma | |
| from langchain_openai import OpenAIEmbeddings, ChatOpenAI | |
| from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder | |
| from langchain.chains import create_history_aware_retriever, create_retrieval_chain | |
| from langchain.chains.combine_documents import create_stuff_documents_chain | |
| def get_response(user_input): | |
| return "I dont know" | |
| def get_vector_store_from_url(url): | |
| loader = WebBaseLoader(url) | |
| document = loader.load() | |
| # split the document into chunks | |
| text_splitter = RecursiveCharacterTextSplitter() | |
| document_chunks = text_splitter.split_documents(document) | |
| # create a vectorstore from the chunks | |
| vector_store = Chroma.from_documents(document_chunks, OpenAIEmbeddings()) | |
| return vector_store | |
| def get_context_retriever_chain(vector_store): | |
| llm = ChatOpenAI() | |
| retriever = vector_store.as_retriever() | |
| prompt = ChatPromptTemplate.from_messages([ | |
| MessagesPlaceholder(variable_name="chat_history"), | |
| ("user", "{input}"), | |
| ("user", "Given the above conversation, generate a search query to look up in order to get information relevant to the conversation") | |
| ]) | |
| retriever_chain = create_history_aware_retriever(llm, retriever, prompt) | |
| return retriever_chain | |
| def get_conversational_rag_chain(retriever_chain): | |
| llm = ChatOpenAI() | |
| prompt = ChatPromptTemplate.from_messages([ | |
| ("system", "Answer the user's questions based on the below context:\n\n{context}"), | |
| MessagesPlaceholder(variable_name="chat_history"), | |
| ("user", "{input}"), | |
| ]) | |
| stuff_documents_chain = create_stuff_documents_chain(llm,prompt) | |
| return create_retrieval_chain(retriever_chain, stuff_documents_chain) | |
| def get_response(user_input): | |
| retriever_chain = get_context_retriever_chain(st.session_state.vector_store) | |
| conversation_rag_chain = get_conversational_rag_chain(retriever_chain) | |
| response = conversation_rag_chain.invoke({ | |
| "chat_history": st.session_state.chat_history, | |
| "input": user_query | |
| }) | |
| return response['answer'] | |
| # app config | |
| st.set_page_config(page_title= "Chat with Websites", page_icon="🤖") | |
| st.title("Chat with Websites") | |
| #sidebar | |
| with st.sidebar: | |
| st.header("Settings") | |
| website_url = st.text_input("Website URL") | |
| openai_apikey = st.text_input("Enter your OpenAI API key") | |
| if (website_url is None or website_url == "") or (openai_apikey is None or openai_apikey == ""): | |
| st.info("Please ensure if website URL and Open AI api key are entered") | |
| else: | |
| if "chat_history" not in st.session_state: | |
| st.session_state.chat_history = [ | |
| AIMessage(content = "Hello, I am a bot. How can I help you"), | |
| ] | |
| if "vector_store" not in st.session_state: | |
| st.session_state.vector_store = get_vectorstore_from_url(website_url) | |
| documents = get_vector_store_from_url(website_url) | |
| with st.sidebar: | |
| st.write(documents) | |
| #user_input | |
| user_query = st.chat_input("Type your message here...") | |
| if user_query is not None and user_query !="": | |
| response = get_response(user_query) | |
| st.session_state.chat_history.append(HumanMessage(content=user_query)) | |
| st.session_state.chat_history.append(AIMessage(content=response)) | |
| #conversation | |
| for message in st.session_state.chat_history: | |
| if isinstance(message, AIMessage): # checking if the messsage is the instance of an AI message | |
| with st.chat_message("AI"): | |
| st.write(message.content) | |
| elif isinstance(message, HumanMessage): # checking if the messsage is the instance of a Human | |
| with st.chat_message("Human"): | |
| st.write(message.content) | |