Update app.py
Browse files
app.py
CHANGED
|
@@ -3,6 +3,12 @@ import torch
|
|
| 3 |
from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline
|
| 4 |
from numpy import exp
|
| 5 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
def softmax(vector):
|
| 8 |
e = exp(vector)
|
|
@@ -15,7 +21,7 @@ models=[
|
|
| 15 |
"arnolfokam/ai-generated-image-detector",
|
| 16 |
|
| 17 |
]
|
| 18 |
-
|
| 19 |
def aiornot0(image):
|
| 20 |
labels = ["Real", "AI"]
|
| 21 |
mod=models[0]
|
|
@@ -31,8 +37,7 @@ def aiornot0(image):
|
|
| 31 |
label = labels[prediction]
|
| 32 |
html_out = f"""
|
| 33 |
<h1>This image is likely: {label}</h1><br><h3>
|
| 34 |
-
|
| 35 |
-
<br>
|
| 36 |
Probabilites:<br>
|
| 37 |
Real: {px[0][0]}<br>
|
| 38 |
AI: {px[1][0]}"""
|
|
@@ -56,8 +61,7 @@ def aiornot1(image):
|
|
| 56 |
label = labels[prediction]
|
| 57 |
html_out = f"""
|
| 58 |
<h1>This image is likely: {label}</h1><br><h3>
|
| 59 |
-
|
| 60 |
-
<br>
|
| 61 |
Probabilites:<br>
|
| 62 |
Real: {px[0][0]}<br>
|
| 63 |
AI: {px[1][0]}"""
|
|
@@ -81,8 +85,7 @@ def aiornot2(image):
|
|
| 81 |
label = labels[prediction]
|
| 82 |
html_out = f"""
|
| 83 |
<h1>This image is likely: {label}</h1><br><h3>
|
| 84 |
-
|
| 85 |
-
<br>
|
| 86 |
Probabilites:<br>
|
| 87 |
Real: {px[1][0]}<br>
|
| 88 |
AI: {px[0][0]}"""
|
|
@@ -92,26 +95,45 @@ def aiornot2(image):
|
|
| 92 |
results[labels[idx]] = px[idx][0]
|
| 93 |
#results[labels['label']] = result['score']
|
| 94 |
return gr.HTML.update(html_out),results
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
with gr.Blocks() as app:
|
| 97 |
-
with gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
inp = gr.Pil()
|
| 99 |
-
btn = gr.Button()
|
| 100 |
with gr.Group():
|
| 101 |
with gr.Row():
|
| 102 |
with gr.Box():
|
| 103 |
-
lab0 = gr.HTML(f"""<b>Testing on Model: {models[0]}</b>""")
|
| 104 |
-
outp0 = gr.HTML("""""")
|
| 105 |
n_out0=gr.Label(label="Output")
|
|
|
|
| 106 |
with gr.Box():
|
| 107 |
-
lab1 = gr.HTML(f"""<b>Testing on Model: {models[1]}</b>""")
|
| 108 |
-
outp1 = gr.HTML("""""")
|
| 109 |
n_out1=gr.Label(label="Output")
|
|
|
|
| 110 |
with gr.Box():
|
| 111 |
-
lab2 = gr.HTML(f"""<b>Testing on Model: {models[2]}</b>""")
|
| 112 |
-
outp2 = gr.HTML("""""")
|
| 113 |
n_out2=gr.Label(label="Output")
|
|
|
|
|
|
|
|
|
|
| 114 |
btn.click(aiornot0,[inp],[outp0,n_out0])
|
| 115 |
btn.click(aiornot1,[inp],[outp1,n_out1])
|
| 116 |
btn.click(aiornot2,[inp],[outp2,n_out2])
|
| 117 |
-
|
|
|
|
|
|
| 3 |
from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline
|
| 4 |
from numpy import exp
|
| 5 |
import pandas as pd
|
| 6 |
+
from PIL import Image
|
| 7 |
+
import urllib.request
|
| 8 |
+
import uuid
|
| 9 |
+
uid=uuid.uuid4()
|
| 10 |
+
|
| 11 |
+
|
| 12 |
|
| 13 |
def softmax(vector):
|
| 14 |
e = exp(vector)
|
|
|
|
| 21 |
"arnolfokam/ai-generated-image-detector",
|
| 22 |
|
| 23 |
]
|
| 24 |
+
|
| 25 |
def aiornot0(image):
|
| 26 |
labels = ["Real", "AI"]
|
| 27 |
mod=models[0]
|
|
|
|
| 37 |
label = labels[prediction]
|
| 38 |
html_out = f"""
|
| 39 |
<h1>This image is likely: {label}</h1><br><h3>
|
| 40 |
+
|
|
|
|
| 41 |
Probabilites:<br>
|
| 42 |
Real: {px[0][0]}<br>
|
| 43 |
AI: {px[1][0]}"""
|
|
|
|
| 61 |
label = labels[prediction]
|
| 62 |
html_out = f"""
|
| 63 |
<h1>This image is likely: {label}</h1><br><h3>
|
| 64 |
+
|
|
|
|
| 65 |
Probabilites:<br>
|
| 66 |
Real: {px[0][0]}<br>
|
| 67 |
AI: {px[1][0]}"""
|
|
|
|
| 85 |
label = labels[prediction]
|
| 86 |
html_out = f"""
|
| 87 |
<h1>This image is likely: {label}</h1><br><h3>
|
| 88 |
+
|
|
|
|
| 89 |
Probabilites:<br>
|
| 90 |
Real: {px[1][0]}<br>
|
| 91 |
AI: {px[0][0]}"""
|
|
|
|
| 95 |
results[labels[idx]] = px[idx][0]
|
| 96 |
#results[labels['label']] = result['score']
|
| 97 |
return gr.HTML.update(html_out),results
|
| 98 |
+
|
| 99 |
+
def load_url(url):
|
| 100 |
+
try:
|
| 101 |
+
urllib.request.urlretrieve(
|
| 102 |
+
f'{url}',
|
| 103 |
+
f"{uid}tmp_im.png")
|
| 104 |
+
image = Image.open(f"{uid}tmp_im.png")
|
| 105 |
+
mes = "Image Loaded"
|
| 106 |
+
except Exception as e:
|
| 107 |
+
image=None
|
| 108 |
+
mes=f"Image not Found<br>Error: {e}"
|
| 109 |
+
return image,mes
|
| 110 |
with gr.Blocks() as app:
|
| 111 |
+
with gr.Row():
|
| 112 |
+
with gr.Column():
|
| 113 |
+
in_url=gr.Textbox(label="Image URL")
|
| 114 |
+
with gr.Row():
|
| 115 |
+
load_btn=gr.Button("Load URL")
|
| 116 |
+
btn = gr.Button("Detect AI")
|
| 117 |
+
mes = gr.HTML("""""")
|
| 118 |
inp = gr.Pil()
|
|
|
|
| 119 |
with gr.Group():
|
| 120 |
with gr.Row():
|
| 121 |
with gr.Box():
|
| 122 |
+
lab0 = gr.HTML(f"""<b>Testing on Model: <a href='https://huggingface.co/{models[0]}'>{models[0]}</a></b>""")
|
|
|
|
| 123 |
n_out0=gr.Label(label="Output")
|
| 124 |
+
outp0 = gr.HTML("""""")
|
| 125 |
with gr.Box():
|
| 126 |
+
lab1 = gr.HTML(f"""<b>Testing on Model: <a href='https://huggingface.co/{models[1]}'>{models[1]}</a></b>""")
|
|
|
|
| 127 |
n_out1=gr.Label(label="Output")
|
| 128 |
+
outp1 = gr.HTML("""""")
|
| 129 |
with gr.Box():
|
| 130 |
+
lab2 = gr.HTML(f"""<b>Testing on Model: <a href='https://huggingface.co/{models[2]}'>{models[2]}</a></b>""")
|
|
|
|
| 131 |
n_out2=gr.Label(label="Output")
|
| 132 |
+
outp2 = gr.HTML("""""")
|
| 133 |
+
|
| 134 |
+
load_btn.click(load_url,in_url,[inp,mes])
|
| 135 |
btn.click(aiornot0,[inp],[outp0,n_out0])
|
| 136 |
btn.click(aiornot1,[inp],[outp1,n_out1])
|
| 137 |
btn.click(aiornot2,[inp],[outp2,n_out2])
|
| 138 |
+
|
| 139 |
+
app.queue(concurrency_count=20).launch()
|