Spaces:
Runtime error
Runtime error
Replace model with inference client + llama3
Browse files- app.py +34 -49
- requirements.txt +0 -1
- src/templates.py +10 -0
app.py
CHANGED
|
@@ -11,21 +11,13 @@ from dotenv import load_dotenv
|
|
| 11 |
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
| 12 |
from bertopic import BERTopic
|
| 13 |
from bertopic.representation import KeyBERTInspired
|
| 14 |
-
from bertopic.representation import TextGeneration
|
| 15 |
|
| 16 |
-
from huggingface_hub import HfApi
|
| 17 |
from sklearn.feature_extraction.text import CountVectorizer
|
| 18 |
from sentence_transformers import SentenceTransformer
|
| 19 |
-
from torch import cuda, bfloat16
|
| 20 |
-
from transformers import (
|
| 21 |
-
BitsAndBytesConfig,
|
| 22 |
-
AutoTokenizer,
|
| 23 |
-
AutoModelForCausalLM,
|
| 24 |
-
pipeline,
|
| 25 |
-
)
|
| 26 |
|
| 27 |
from src.hub import create_space_with_content
|
| 28 |
-
from src.templates import
|
| 29 |
from src.viewer_api import (
|
| 30 |
get_split_rows,
|
| 31 |
get_parquet_urls,
|
|
@@ -60,35 +52,13 @@ logging.basicConfig(
|
|
| 60 |
|
| 61 |
api = HfApi(token=HF_TOKEN)
|
| 62 |
|
| 63 |
-
|
| 64 |
-
load_in_4bit=True,
|
| 65 |
-
bnb_4bit_quant_type="nf4",
|
| 66 |
-
bnb_4bit_use_double_quant=True,
|
| 67 |
-
bnb_4bit_compute_dtype=bfloat16,
|
| 68 |
-
)
|
| 69 |
-
|
| 70 |
-
model_id = "meta-llama/Llama-2-7b-chat-hf"
|
| 71 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 72 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 73 |
-
model_id,
|
| 74 |
-
trust_remote_code=True,
|
| 75 |
-
quantization_config=bnb_config,
|
| 76 |
-
device_map="auto",
|
| 77 |
-
)
|
| 78 |
-
model.eval()
|
| 79 |
-
generator = pipeline(
|
| 80 |
-
model=model,
|
| 81 |
-
tokenizer=tokenizer,
|
| 82 |
-
task="text-generation",
|
| 83 |
-
temperature=0.1,
|
| 84 |
-
max_new_tokens=500,
|
| 85 |
-
repetition_penalty=1.1,
|
| 86 |
-
)
|
| 87 |
-
|
| 88 |
embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
|
| 89 |
vectorizer_model = CountVectorizer(stop_words="english")
|
| 90 |
representation_model = KeyBERTInspired()
|
| 91 |
|
|
|
|
|
|
|
| 92 |
|
| 93 |
def calculate_embeddings(docs):
|
| 94 |
return embedding_model.encode(docs, show_progress_bar=True, batch_size=32)
|
|
@@ -294,13 +264,6 @@ def generate_topics(dataset, config, split, column, plot_type):
|
|
| 294 |
"",
|
| 295 |
)
|
| 296 |
|
| 297 |
-
dataset_clear_name = dataset.replace("/", "-")
|
| 298 |
-
plot_png = f"{dataset_clear_name}-{plot_type.lower()}.png"
|
| 299 |
-
if plot_type == "DataMapPlot":
|
| 300 |
-
topic_plot.savefig(plot_png, format="png", dpi=300)
|
| 301 |
-
else:
|
| 302 |
-
topic_plot.write_image(plot_png)
|
| 303 |
-
|
| 304 |
all_topics = base_model.topics_
|
| 305 |
topics_info = base_model.get_topic_info()
|
| 306 |
|
|
@@ -309,13 +272,27 @@ def generate_topics(dataset, config, split, column, plot_type):
|
|
| 309 |
logging.info(
|
| 310 |
f"Processing topic: {row['Topic']} - Representation: {row['Representation']}"
|
| 311 |
)
|
| 312 |
-
prompt = f"{
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 319 |
base_model.set_topic_labels(new_topics_by_text_generation)
|
| 320 |
|
| 321 |
topics_info = base_model.get_topic_info()
|
|
@@ -350,6 +327,14 @@ def generate_topics(dataset, config, split, column, plot_type):
|
|
| 350 |
title="",
|
| 351 |
)
|
| 352 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 353 |
custom_labels = base_model.custom_labels_
|
| 354 |
topic_names_array = [custom_labels[doc_topic + 1] for doc_topic in all_topics]
|
| 355 |
yield (
|
|
|
|
| 11 |
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
| 12 |
from bertopic import BERTopic
|
| 13 |
from bertopic.representation import KeyBERTInspired
|
|
|
|
| 14 |
|
| 15 |
+
from huggingface_hub import HfApi, InferenceClient
|
| 16 |
from sklearn.feature_extraction.text import CountVectorizer
|
| 17 |
from sentence_transformers import SentenceTransformer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
from src.hub import create_space_with_content
|
| 20 |
+
from src.templates import LLAMA_3_8B_PROMPT, SPACE_REPO_CARD_CONTENT
|
| 21 |
from src.viewer_api import (
|
| 22 |
get_split_rows,
|
| 23 |
get_parquet_urls,
|
|
|
|
| 52 |
|
| 53 |
api = HfApi(token=HF_TOKEN)
|
| 54 |
|
| 55 |
+
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
|
| 57 |
vectorizer_model = CountVectorizer(stop_words="english")
|
| 58 |
representation_model = KeyBERTInspired()
|
| 59 |
|
| 60 |
+
inference_client = InferenceClient(model_id)
|
| 61 |
+
|
| 62 |
|
| 63 |
def calculate_embeddings(docs):
|
| 64 |
return embedding_model.encode(docs, show_progress_bar=True, batch_size=32)
|
|
|
|
| 264 |
"",
|
| 265 |
)
|
| 266 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 267 |
all_topics = base_model.topics_
|
| 268 |
topics_info = base_model.get_topic_info()
|
| 269 |
|
|
|
|
| 272 |
logging.info(
|
| 273 |
f"Processing topic: {row['Topic']} - Representation: {row['Representation']}"
|
| 274 |
)
|
| 275 |
+
prompt = f"{LLAMA_3_8B_PROMPT.replace('[KEYWORDS]', ','.join(row['Representation']))}"
|
| 276 |
+
prompt_messages = [
|
| 277 |
+
{
|
| 278 |
+
"role": "system",
|
| 279 |
+
"content": "You are a helpful, respectful and honest assistant for labeling topics.",
|
| 280 |
+
},
|
| 281 |
+
{"role": "user", "content": prompt},
|
| 282 |
+
]
|
| 283 |
+
output = inference_client.chat_completion(
|
| 284 |
+
messages=prompt_messages,
|
| 285 |
+
stream=False,
|
| 286 |
+
max_tokens=500,
|
| 287 |
+
top_p=0.8,
|
| 288 |
+
seed=42,
|
| 289 |
+
)
|
| 290 |
+
inference_response = output.choices[0].message.content
|
| 291 |
+
logging.info("Inference response:")
|
| 292 |
+
logging.info(inference_response)
|
| 293 |
+
new_topics_by_text_generation[row["Topic"]] = inference_response.replace(
|
| 294 |
+
"Topic=", ""
|
| 295 |
+
).strip()
|
| 296 |
base_model.set_topic_labels(new_topics_by_text_generation)
|
| 297 |
|
| 298 |
topics_info = base_model.get_topic_info()
|
|
|
|
| 327 |
title="",
|
| 328 |
)
|
| 329 |
)
|
| 330 |
+
|
| 331 |
+
dataset_clear_name = dataset.replace("/", "-")
|
| 332 |
+
plot_png = f"{dataset_clear_name}-{plot_type.lower()}.png"
|
| 333 |
+
if plot_type == "DataMapPlot":
|
| 334 |
+
topic_plot.savefig(plot_png, format="png", dpi=300)
|
| 335 |
+
else:
|
| 336 |
+
topic_plot.write_image(plot_png)
|
| 337 |
+
|
| 338 |
custom_labels = base_model.custom_labels_
|
| 339 |
topic_names_array = [custom_labels[doc_topic + 1] for doc_topic in all_topics]
|
| 340 |
yield (
|
requirements.txt
CHANGED
|
@@ -15,4 +15,3 @@ pandas
|
|
| 15 |
numpy
|
| 16 |
python-dotenv
|
| 17 |
kaleido
|
| 18 |
-
transformers
|
|
|
|
| 15 |
numpy
|
| 16 |
python-dotenv
|
| 17 |
kaleido
|
|
|
src/templates.py
CHANGED
|
@@ -22,6 +22,16 @@ Based on the information about the topic above, please create a short label of t
|
|
| 22 |
|
| 23 |
REPRESENTATION_PROMPT = f"{SYSTEM_PROMPT}{EXAMPLE_PROMPT}{MAIN_PROMPT}"
|
| 24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
SPACE_REPO_CARD_CONTENT = """
|
| 26 |
---
|
| 27 |
title: {dataset_id}
|
|
|
|
| 22 |
|
| 23 |
REPRESENTATION_PROMPT = f"{SYSTEM_PROMPT}{EXAMPLE_PROMPT}{MAIN_PROMPT}"
|
| 24 |
|
| 25 |
+
LLAMA_3_8B_PROMPT = """
|
| 26 |
+
Example:
|
| 27 |
+
I have a topic that is described by the following keywords: 'meat, beef, eat, eating, emissions, steak, food, health, processed, chicken'.
|
| 28 |
+
Based on the information about the topic above, please create a short label of this topic. Make sure you to only return the label and nothing more.
|
| 29 |
+
Topic=Environmental impacts of eating meat
|
| 30 |
+
Instruction:
|
| 31 |
+
I have a topic that is described by the following keywords: '[KEYWORDS]'.
|
| 32 |
+
Based on the information about the topic above, please create a short label of this topic. Make sure you to only return the label and nothing more.
|
| 33 |
+
"""
|
| 34 |
+
|
| 35 |
SPACE_REPO_CARD_CONTENT = """
|
| 36 |
---
|
| 37 |
title: {dataset_id}
|