Update core/silero_vad.py
Browse files- core/silero_vad.py +7 -275
core/silero_vad.py
CHANGED
|
@@ -1,272 +1,5 @@
|
|
| 1 |
|
| 2 |
-
# import torch
|
| 3 |
-
# import numpy as np
|
| 4 |
-
# from typing import Callable
|
| 5 |
-
# from config.settings import settings
|
| 6 |
-
# import os
|
| 7 |
-
# import time
|
| 8 |
|
| 9 |
-
|
| 10 |
-
# class SileroVAD:
|
| 11 |
-
# def __init__(self):
|
| 12 |
-
# self.model = None
|
| 13 |
-
# self.utils = None
|
| 14 |
-
# self.sample_rate = 16000
|
| 15 |
-
# self.is_streaming = False
|
| 16 |
-
# self.speech_callback = None
|
| 17 |
-
# self.audio_buffer = []
|
| 18 |
-
# self.speech_start_time = 0
|
| 19 |
-
# self.min_speech_duration = 0.5 # Giây
|
| 20 |
-
|
| 21 |
-
# # ✅ Thêm cấu hình chunk size cho Silero
|
| 22 |
-
# self.chunk_size = 512 # Silero yêu cầu 512 samples cho 16000Hz
|
| 23 |
-
# self.chunk_duration = self.chunk_size / self.sample_rate # 0.032 giây
|
| 24 |
-
|
| 25 |
-
# self._initialize_model()
|
| 26 |
-
|
| 27 |
-
# def _initialize_model(self):
|
| 28 |
-
# """Khởi tạo Silero VAD model"""
|
| 29 |
-
# try:
|
| 30 |
-
# print("🔄 Đang tải Silero VAD model...")
|
| 31 |
-
|
| 32 |
-
# self.model, self.utils = torch.hub.load(
|
| 33 |
-
# repo_or_dir='snakers4/silero-vad',
|
| 34 |
-
# model='silero_vad',
|
| 35 |
-
# force_reload=False,
|
| 36 |
-
# trust_repo=True
|
| 37 |
-
# )
|
| 38 |
-
|
| 39 |
-
# self.model.eval()
|
| 40 |
-
# print("✅ Đã tải Silero VAD model thành công")
|
| 41 |
-
|
| 42 |
-
# except Exception as e:
|
| 43 |
-
# print(f"❌ Lỗi tải Silero VAD model: {e}")
|
| 44 |
-
# self._initialize_model_fallback()
|
| 45 |
-
|
| 46 |
-
# def _initialize_model_fallback(self):
|
| 47 |
-
# """Fallback nếu torch.hub.load thất bại"""
|
| 48 |
-
# try:
|
| 49 |
-
# model_dir = torch.hub.get_dir()
|
| 50 |
-
# model_path = os.path.join(
|
| 51 |
-
# model_dir, 'snakers4_silero-vad_master', 'files', 'silero_vad.jit'
|
| 52 |
-
# )
|
| 53 |
-
|
| 54 |
-
# if os.path.exists(model_path):
|
| 55 |
-
# self.model = torch.jit.load(model_path)
|
| 56 |
-
# self.model.eval()
|
| 57 |
-
# print("✅ Đã tải Silero VAD model thành công (fallback)")
|
| 58 |
-
# else:
|
| 59 |
-
# print("❌ Không tìm thấy model file (fallback thất bại)")
|
| 60 |
-
# self.model = None
|
| 61 |
-
|
| 62 |
-
# except Exception as e:
|
| 63 |
-
# print(f"❌ Lỗi tải Silero VAD model fallback: {e}")
|
| 64 |
-
# self.model = None
|
| 65 |
-
|
| 66 |
-
# def start_stream(self, speech_callback: Callable):
|
| 67 |
-
# """Bắt đầu stream với VAD"""
|
| 68 |
-
# if self.model is None:
|
| 69 |
-
# print("❌ Silero VAD model chưa được khởi tạo")
|
| 70 |
-
# return False
|
| 71 |
-
|
| 72 |
-
# self.is_streaming = True
|
| 73 |
-
# self.speech_callback = speech_callback
|
| 74 |
-
# self.audio_buffer = []
|
| 75 |
-
# self.speech_start_time = 0
|
| 76 |
-
# print("🎙️ Bắt đầu Silero VAD streaming...")
|
| 77 |
-
# return True
|
| 78 |
-
|
| 79 |
-
# def stop_stream(self):
|
| 80 |
-
# """Dừng stream"""
|
| 81 |
-
# self.is_streaming = False
|
| 82 |
-
# self.speech_callback = None
|
| 83 |
-
# self.audio_buffer = []
|
| 84 |
-
# self.speech_start_time = 0
|
| 85 |
-
# print("🛑 Đã dừng Silero VAD streaming")
|
| 86 |
-
|
| 87 |
-
# def process_stream(self, audio_chunk: np.ndarray, sample_rate: int):
|
| 88 |
-
# """Xử lý audio chunk với Silero VAD - ĐÃ SỬA LỖI"""
|
| 89 |
-
# if not self.is_streaming or self.model is None:
|
| 90 |
-
# return
|
| 91 |
-
|
| 92 |
-
# try:
|
| 93 |
-
# # Resample nếu cần
|
| 94 |
-
# if sample_rate != self.sample_rate:
|
| 95 |
-
# audio_chunk = self._resample_audio(audio_chunk, sample_rate, self.sample_rate)
|
| 96 |
-
|
| 97 |
-
# # Thêm vào buffer
|
| 98 |
-
# self.audio_buffer.extend(audio_chunk)
|
| 99 |
-
|
| 100 |
-
# # ✅ Xử lý từng chunk 512 samples (Silero requirement)
|
| 101 |
-
# while len(self.audio_buffer) >= self.chunk_size:
|
| 102 |
-
# chunk = self.audio_buffer[:self.chunk_size]
|
| 103 |
-
# self._process_single_chunk(np.array(chunk))
|
| 104 |
-
# # Giữ lại phần thừa cho chunk tiếp theo
|
| 105 |
-
# self.audio_buffer = self.audio_buffer[self.chunk_size:]
|
| 106 |
-
|
| 107 |
-
# except Exception as e:
|
| 108 |
-
# print(f"❌ Lỗi xử lý Silero VAD: {e}")
|
| 109 |
-
|
| 110 |
-
# def _process_single_chunk(self, audio_chunk: np.ndarray):
|
| 111 |
-
# """Xử lý một chunk 512 samples duy nhất"""
|
| 112 |
-
# try:
|
| 113 |
-
# # Chuẩn hóa audio
|
| 114 |
-
# audio_chunk = self._normalize_audio(audio_chunk)
|
| 115 |
-
|
| 116 |
-
# # Đảm bảo đúng kích thước
|
| 117 |
-
# if len(audio_chunk) != self.chunk_size:
|
| 118 |
-
# # Nếu không đủ, pad với zeros
|
| 119 |
-
# if len(audio_chunk) < self.chunk_size:
|
| 120 |
-
# padding = np.zeros(self.chunk_size - len(audio_chunk), dtype=np.float32)
|
| 121 |
-
# audio_chunk = np.concatenate([audio_chunk, padding])
|
| 122 |
-
# else:
|
| 123 |
-
# audio_chunk = audio_chunk[:self.chunk_size]
|
| 124 |
-
|
| 125 |
-
# # Dự đoán xác suất speech
|
| 126 |
-
# speech_prob = self._get_speech_probability(audio_chunk)
|
| 127 |
-
# print(f"🎯 Silero VAD speech probability: {speech_prob:.3f}")
|
| 128 |
-
|
| 129 |
-
# # Xử lý logic speech detection
|
| 130 |
-
# current_time = time.time()
|
| 131 |
-
|
| 132 |
-
# if speech_prob > settings.VAD_THRESHOLD:
|
| 133 |
-
# if self.speech_start_time == 0:
|
| 134 |
-
# self.speech_start_time = current_time
|
| 135 |
-
# print("🎯 Bắt đầu phát hiện speech")
|
| 136 |
-
|
| 137 |
-
# speech_duration = current_time - self.speech_start_time
|
| 138 |
-
|
| 139 |
-
# # Nếu đủ thời gian speech, gọi callback
|
| 140 |
-
# if speech_duration >= self.min_speech_duration:
|
| 141 |
-
# if self.speech_callback:
|
| 142 |
-
# # Thu thập tất cả audio từ khi bắt đầu speech
|
| 143 |
-
# full_audio = self._collect_speech_audio()
|
| 144 |
-
# if len(full_audio) > 0:
|
| 145 |
-
# self.speech_callback(full_audio, self.sample_rate)
|
| 146 |
-
# self.speech_start_time = 0
|
| 147 |
-
# else:
|
| 148 |
-
# if self.speech_start_time > 0:
|
| 149 |
-
# print("🔇 Kết thúc speech segment")
|
| 150 |
-
# self.speech_start_time = 0
|
| 151 |
-
|
| 152 |
-
# except Exception as e:
|
| 153 |
-
# print(f"❌ Lỗi xử lý Silero VAD chunk: {e}")
|
| 154 |
-
|
| 155 |
-
# def _collect_speech_audio(self) -> np.ndarray:
|
| 156 |
-
# """Thu thập toàn bộ audio từ khi bắt đầu speech"""
|
| 157 |
-
# # Trong implementation thực tế, bạn cần lưu lại audio
|
| 158 |
-
# # từ khi bắt đầu phát hiện speech đến hiện tại
|
| 159 |
-
# # Đây là simplified version
|
| 160 |
-
# min_samples = int(self.sample_rate * self.min_speech_duration)
|
| 161 |
-
# return np.random.randn(min_samples).astype(np.float32) # Placeholder
|
| 162 |
-
|
| 163 |
-
# def _normalize_audio(self, audio: np.ndarray) -> np.ndarray:
|
| 164 |
-
# """Chuẩn hóa audio"""
|
| 165 |
-
# if audio.dtype != np.float32:
|
| 166 |
-
# audio = audio.astype(np.float32)
|
| 167 |
-
# if np.max(np.abs(audio)) > 1.0:
|
| 168 |
-
# audio = audio / 32768.0
|
| 169 |
-
# return np.clip(audio, -1.0, 1.0)
|
| 170 |
-
|
| 171 |
-
# def _get_speech_probability(self, audio_chunk: np.ndarray) -> float:
|
| 172 |
-
# """Trả về xác suất speech - ĐÃ SỬA LỖI"""
|
| 173 |
-
# try:
|
| 174 |
-
# # ✅ Đảm bảo đúng kích thước 512 samples
|
| 175 |
-
# if len(audio_chunk) != self.chunk_size:
|
| 176 |
-
# # Resize về đúng 512 samples
|
| 177 |
-
# if len(audio_chunk) > self.chunk_size:
|
| 178 |
-
# audio_chunk = audio_chunk[:self.chunk_size]
|
| 179 |
-
# else:
|
| 180 |
-
# padding = np.zeros(self.chunk_size - len(audio_chunk), dtype=np.float32)
|
| 181 |
-
# audio_chunk = np.concatenate([audio_chunk, padding])
|
| 182 |
-
|
| 183 |
-
# audio_tensor = torch.from_numpy(audio_chunk).float().unsqueeze(0)
|
| 184 |
-
|
| 185 |
-
# with torch.no_grad():
|
| 186 |
-
# return self.model(audio_tensor, self.sample_rate).item()
|
| 187 |
-
|
| 188 |
-
# except Exception as e:
|
| 189 |
-
# print(f"❌ Lỗi lấy speech probability: {e}")
|
| 190 |
-
# return 0.0
|
| 191 |
-
|
| 192 |
-
# def _resample_audio(self, audio: np.ndarray, orig_sr: int, target_sr: int) -> np.ndarray:
|
| 193 |
-
# """Resample audio"""
|
| 194 |
-
# if orig_sr == target_sr:
|
| 195 |
-
# return audio
|
| 196 |
-
# try:
|
| 197 |
-
# from scipy import signal
|
| 198 |
-
# # Tính số samples mới
|
| 199 |
-
# duration = len(audio) / orig_sr
|
| 200 |
-
# new_length = int(duration * target_sr)
|
| 201 |
-
|
| 202 |
-
# # Resample
|
| 203 |
-
# resampled_audio = signal.resample(audio, new_length)
|
| 204 |
-
# return resampled_audio.astype(np.float32)
|
| 205 |
-
|
| 206 |
-
# except ImportError:
|
| 207 |
-
# # Fallback simple resampling
|
| 208 |
-
# orig_len = len(audio)
|
| 209 |
-
# new_len = int(orig_len * target_sr / orig_sr)
|
| 210 |
-
# x_old = np.linspace(0, 1, orig_len)
|
| 211 |
-
# x_new = np.linspace(0, 1, new_len)
|
| 212 |
-
# return np.interp(x_new, x_old, audio).astype(np.float32)
|
| 213 |
-
# except Exception as e:
|
| 214 |
-
# print(f"⚠️ Lỗi resample: {e}")
|
| 215 |
-
# return audio
|
| 216 |
-
|
| 217 |
-
# def is_speech(self, audio_chunk: np.ndarray, sample_rate: int) -> bool:
|
| 218 |
-
# """Kiểm tra chunk có phải speech không - ĐÃ SỬA"""
|
| 219 |
-
# if self.model is None:
|
| 220 |
-
# return True
|
| 221 |
-
# try:
|
| 222 |
-
# if sample_rate != self.sample_rate:
|
| 223 |
-
# audio_chunk = self._resample_audio(audio_chunk, sample_rate, self.sample_rate)
|
| 224 |
-
# audio_chunk = self._normalize_audio(audio_chunk)
|
| 225 |
-
|
| 226 |
-
# # ✅ Chia thành các chunk 512 samples và kiểm tra trung bình
|
| 227 |
-
# chunk_size = 512
|
| 228 |
-
# speech_probs = []
|
| 229 |
-
|
| 230 |
-
# for i in range(0, len(audio_chunk), chunk_size):
|
| 231 |
-
# chunk = audio_chunk[i:i+chunk_size]
|
| 232 |
-
# if len(chunk) == chunk_size:
|
| 233 |
-
# prob = self._get_speech_probability(chunk)
|
| 234 |
-
# speech_probs.append(prob)
|
| 235 |
-
|
| 236 |
-
# if not speech_probs:
|
| 237 |
-
# return False
|
| 238 |
-
|
| 239 |
-
# avg_prob = np.mean(speech_probs)
|
| 240 |
-
# return avg_prob > settings.VAD_THRESHOLD
|
| 241 |
-
|
| 242 |
-
# except Exception as e:
|
| 243 |
-
# print(f"❌ Lỗi kiểm tra speech: {e}")
|
| 244 |
-
# return True
|
| 245 |
-
|
| 246 |
-
# def get_speech_probability(self, audio_chunk: np.ndarray, sample_rate: int) -> float:
|
| 247 |
-
# """Lấy xác suất speech trung bình"""
|
| 248 |
-
# if self.model is None:
|
| 249 |
-
# return 0.0
|
| 250 |
-
# try:
|
| 251 |
-
# if sample_rate != self.sample_rate:
|
| 252 |
-
# audio_chunk = self._resample_audio(audio_chunk, sample_rate, self.sample_rate)
|
| 253 |
-
# audio_chunk = self._normalize_audio(audio_chunk)
|
| 254 |
-
|
| 255 |
-
# # Chia thành các chunk 512 samples
|
| 256 |
-
# chunk_size = 512
|
| 257 |
-
# speech_probs = []
|
| 258 |
-
|
| 259 |
-
# for i in range(0, len(audio_chunk), chunk_size):
|
| 260 |
-
# chunk = audio_chunk[i:i+chunk_size]
|
| 261 |
-
# if len(chunk) == chunk_size:
|
| 262 |
-
# prob = self._get_speech_probability(chunk)
|
| 263 |
-
# speech_probs.append(prob)
|
| 264 |
-
|
| 265 |
-
# return np.mean(speech_probs) if speech_probs else 0.0
|
| 266 |
-
|
| 267 |
-
# except Exception as e:
|
| 268 |
-
# print(f"❌ Lỗi lấy speech probability: {e}")
|
| 269 |
-
# return 0.0
|
| 270 |
import io
|
| 271 |
import numpy as np
|
| 272 |
import soundfile as sf
|
|
@@ -353,14 +86,13 @@ class SileroVAD:
|
|
| 353 |
return
|
| 354 |
|
| 355 |
try:
|
| 356 |
-
|
| 357 |
if sample_rate != self.sample_rate:
|
| 358 |
audio_chunk = self._resample_audio(audio_chunk, sample_rate, self.sample_rate)
|
| 359 |
|
| 360 |
-
# Thêm vào buffer chính
|
| 361 |
self.audio_buffer.extend(audio_chunk)
|
| 362 |
|
| 363 |
-
|
| 364 |
while len(self.audio_buffer) >= self.chunk_size:
|
| 365 |
chunk = self.audio_buffer[:self.chunk_size]
|
| 366 |
self._process_vad_chunk(np.array(chunk))
|
|
@@ -382,7 +114,7 @@ class SileroVAD:
|
|
| 382 |
# Logic state machine cải tiến
|
| 383 |
if self.state == "silence":
|
| 384 |
if speech_prob > self.speech_threshold:
|
| 385 |
-
print("
|
| 386 |
self.state = "speech"
|
| 387 |
self.speech_start_time = current_time
|
| 388 |
self.last_voice_time = current_time
|
|
@@ -410,11 +142,11 @@ class SileroVAD:
|
|
| 410 |
# Điều kiện kết thúc: im lặng đủ lâu VÀ đã nói đủ dài
|
| 411 |
if (silence_duration >= self.min_silence_duration and
|
| 412 |
speech_duration >= self.min_speech_duration):
|
| 413 |
-
print(f"
|
| 414 |
self._finalize_speech()
|
| 415 |
# Hoặc speech quá dài (timeout)
|
| 416 |
elif speech_duration > settings.MAX_AUDIO_DURATION:
|
| 417 |
-
print(f"
|
| 418 |
self._finalize_speech()
|
| 419 |
|
| 420 |
elif self.state == "processing":
|
|
@@ -466,7 +198,7 @@ class SileroVAD:
|
|
| 466 |
with torch.no_grad():
|
| 467 |
return self.model(audio_tensor, self.sample_rate).item()
|
| 468 |
except Exception as e:
|
| 469 |
-
print(f"
|
| 470 |
return 0.0
|
| 471 |
|
| 472 |
def _resample_audio(self, audio: np.ndarray, orig_sr: int, target_sr: int) -> np.ndarray:
|
|
@@ -505,5 +237,5 @@ class SileroVAD:
|
|
| 505 |
return np.mean(speech_probs) > self.speech_threshold if speech_probs else False
|
| 506 |
|
| 507 |
except Exception as e:
|
| 508 |
-
print(f"
|
| 509 |
return True
|
|
|
|
| 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
import io
|
| 4 |
import numpy as np
|
| 5 |
import soundfile as sf
|
|
|
|
| 86 |
return
|
| 87 |
|
| 88 |
try:
|
| 89 |
+
|
| 90 |
if sample_rate != self.sample_rate:
|
| 91 |
audio_chunk = self._resample_audio(audio_chunk, sample_rate, self.sample_rate)
|
| 92 |
|
|
|
|
| 93 |
self.audio_buffer.extend(audio_chunk)
|
| 94 |
|
| 95 |
+
|
| 96 |
while len(self.audio_buffer) >= self.chunk_size:
|
| 97 |
chunk = self.audio_buffer[:self.chunk_size]
|
| 98 |
self._process_vad_chunk(np.array(chunk))
|
|
|
|
| 114 |
# Logic state machine cải tiến
|
| 115 |
if self.state == "silence":
|
| 116 |
if speech_prob > self.speech_threshold:
|
| 117 |
+
print(" Bắt đầu phát hiện speech")
|
| 118 |
self.state = "speech"
|
| 119 |
self.speech_start_time = current_time
|
| 120 |
self.last_voice_time = current_time
|
|
|
|
| 142 |
# Điều kiện kết thúc: im lặng đủ lâu VÀ đã nói đủ dài
|
| 143 |
if (silence_duration >= self.min_silence_duration and
|
| 144 |
speech_duration >= self.min_speech_duration):
|
| 145 |
+
print(f" Kết thúc speech segment (duration: {speech_duration:.2f}s)")
|
| 146 |
self._finalize_speech()
|
| 147 |
# Hoặc speech quá dài (timeout)
|
| 148 |
elif speech_duration > settings.MAX_AUDIO_DURATION:
|
| 149 |
+
print(f"Speech timeout ({speech_duration:.2f}s)")
|
| 150 |
self._finalize_speech()
|
| 151 |
|
| 152 |
elif self.state == "processing":
|
|
|
|
| 198 |
with torch.no_grad():
|
| 199 |
return self.model(audio_tensor, self.sample_rate).item()
|
| 200 |
except Exception as e:
|
| 201 |
+
print(f" Lỗi speech probability: {e}")
|
| 202 |
return 0.0
|
| 203 |
|
| 204 |
def _resample_audio(self, audio: np.ndarray, orig_sr: int, target_sr: int) -> np.ndarray:
|
|
|
|
| 237 |
return np.mean(speech_probs) > self.speech_threshold if speech_probs else False
|
| 238 |
|
| 239 |
except Exception as e:
|
| 240 |
+
print(f" Lỗi kiểm tra speech: {e}")
|
| 241 |
return True
|