Spaces:
Runtime error
Runtime error
Upload 6 files
#1
by
kadirnar
- opened
- app.py +86 -3
- data/1.png +0 -0
- data/2.png +0 -0
- data/3.png +0 -0
- data/4.png +0 -0
- requirements.txt +7 -0
app.py
CHANGED
|
@@ -1,7 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import SegformerForSemanticSegmentation
|
| 2 |
+
from transformers import SegformerImageProcessor
|
| 3 |
+
from PIL import Image
|
| 4 |
import gradio as gr
|
| 5 |
+
import numpy as np
|
| 6 |
+
import random
|
| 7 |
+
import cv2
|
| 8 |
+
import torch
|
| 9 |
|
| 10 |
|
| 11 |
+
image_list = [
|
| 12 |
+
"data/1.png",
|
| 13 |
+
"data/2.png",
|
| 14 |
+
"data/3.png",
|
| 15 |
+
"data/4.png",
|
| 16 |
+
]
|
| 17 |
|
| 18 |
+
model_path = ['deprem-ml/deprem_satellite_semantic_whu']
|
| 19 |
+
|
| 20 |
+
def visualize_instance_seg_mask(mask):
|
| 21 |
+
# Initialize image with zeros with the image resolution
|
| 22 |
+
# of the segmentation mask and 3 channels
|
| 23 |
+
image = np.zeros((mask.shape[0], mask.shape[1], 3))
|
| 24 |
+
|
| 25 |
+
# Create labels
|
| 26 |
+
labels = np.unique(mask)
|
| 27 |
+
label2color = {
|
| 28 |
+
label: (
|
| 29 |
+
random.randint(0, 255),
|
| 30 |
+
random.randint(0, 255),
|
| 31 |
+
random.randint(0, 255),
|
| 32 |
+
)
|
| 33 |
+
for label in labels
|
| 34 |
+
}
|
| 35 |
+
|
| 36 |
+
for height in range(image.shape[0]):
|
| 37 |
+
for width in range(image.shape[1]):
|
| 38 |
+
image[height, width, :] = label2color[mask[height, width]]
|
| 39 |
+
|
| 40 |
+
image = image / 255
|
| 41 |
+
return image
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def Segformer_Segmentation(image_path, model_id):
|
| 45 |
+
output_save = "output.png"
|
| 46 |
+
|
| 47 |
+
test_image = Image.open(image_path)
|
| 48 |
+
|
| 49 |
+
model = SegformerForSemanticSegmentation.from_pretrained(model_id)
|
| 50 |
+
proccessor = SegformerImageProcessor(model_id)
|
| 51 |
+
|
| 52 |
+
inputs = proccessor(images=test_image, return_tensors="pt")
|
| 53 |
+
with torch.no_grad():
|
| 54 |
+
outputs = model(**inputs)
|
| 55 |
+
|
| 56 |
+
result = proccessor.post_process_semantic_segmentation(outputs)[0]
|
| 57 |
+
result = np.array(result)
|
| 58 |
+
result = visualize_instance_seg_mask(result)
|
| 59 |
+
cv2.imwrite(output_save, result*255)
|
| 60 |
+
|
| 61 |
+
return image_path, output_save
|
| 62 |
+
|
| 63 |
+
examples = [[image_list[0], "deprem-ml/deprem_satellite_semantic_whu"],
|
| 64 |
+
[image_list[1], "deprem-ml/deprem_satellite_semantic_whu"],
|
| 65 |
+
[image_list[2], "deprem-ml/deprem_satellite_semantic_whu"],
|
| 66 |
+
[image_list[3], "deprem-ml/deprem_satellite_semantic_whu"]]
|
| 67 |
+
|
| 68 |
+
title = "Deprem ML - Segformer Semantic Segmentation"
|
| 69 |
+
|
| 70 |
+
app = gr.Blocks()
|
| 71 |
+
with app:
|
| 72 |
+
gr.HTML("<h1 style='text-align: center'>{}</h1>".format(title))
|
| 73 |
+
with gr.Row():
|
| 74 |
+
with gr.Column():
|
| 75 |
+
gr.Markdown("Video")
|
| 76 |
+
input_video = gr.Image(type='filepath')
|
| 77 |
+
model_id = gr.Dropdown(value=model_path[0], choices=model_path)
|
| 78 |
+
input_video_button = gr.Button(value="Predict")
|
| 79 |
+
|
| 80 |
+
with gr.Column():
|
| 81 |
+
output_orijinal_image = gr.Image(type='filepath')
|
| 82 |
+
|
| 83 |
+
with gr.Column():
|
| 84 |
+
output_mask_image = gr.Image(type='filepath')
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
gr.Examples(examples, inputs=[input_video, model_id], outputs=[output_orijinal_image, output_mask_image], fn=Segformer_Segmentation, cache_examples=True)
|
| 88 |
+
input_video_button.click(Segformer_Segmentation, inputs=[input_video, model_id], outputs=[output_orijinal_image, output_mask_image])
|
| 89 |
+
|
| 90 |
+
app.launch()
|
data/1.png
ADDED
|
data/2.png
ADDED
|
data/3.png
ADDED
|
data/4.png
ADDED
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio==3.18.0
|
| 2 |
+
matplotlib==3.6.2
|
| 3 |
+
numpy==1.24.2
|
| 4 |
+
Pillow==9.4.0
|
| 5 |
+
torch==1.12.1
|
| 6 |
+
transformers==4.26.0
|
| 7 |
+
opencv-python
|