Spaces:
Runtime error
Runtime error
update sahi version and default params
#1
by
fcakyon
- opened
- app.py +49 -46
- requirements.txt +2 -2
app.py
CHANGED
|
@@ -11,14 +11,20 @@ import torch
|
|
| 11 |
|
| 12 |
IMAGE_SIZE = 640
|
| 13 |
|
| 14 |
-
model_path=hf_hub_download(
|
|
|
|
|
|
|
| 15 |
|
| 16 |
|
| 17 |
-
current_device=
|
| 18 |
-
model_types=["YOLOv5","YOLOv5 + SAHI"]
|
| 19 |
# Model
|
| 20 |
model = AutoDetectionModel.from_pretrained(
|
| 21 |
-
model_type="yolov5",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
)
|
| 23 |
|
| 24 |
|
|
@@ -27,15 +33,15 @@ def sahi_yolo_inference(
|
|
| 27 |
image,
|
| 28 |
slice_height=512,
|
| 29 |
slice_width=512,
|
| 30 |
-
overlap_height_ratio=0.
|
| 31 |
-
overlap_width_ratio=0.
|
| 32 |
-
postprocess_type="
|
| 33 |
-
postprocess_match_metric="
|
| 34 |
-
postprocess_match_threshold=0.
|
| 35 |
postprocess_class_agnostic=False,
|
| 36 |
):
|
| 37 |
|
| 38 |
-
#image_width, image_height = image.size
|
| 39 |
# sliced_bboxes = sahi.slicing.get_slice_bboxes(
|
| 40 |
# image_height,
|
| 41 |
# image_width,
|
|
@@ -50,22 +56,21 @@ def sahi_yolo_inference(
|
|
| 50 |
# f"{len(sliced_bboxes)} slices are too much for huggingface spaces, try smaller slice size."
|
| 51 |
# )
|
| 52 |
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
text_th = None or max(rect_th - 1, 1)
|
| 56 |
|
| 57 |
if "SAHI" in model_type:
|
| 58 |
prediction_result_2 = sahi.predict.get_sliced_prediction(
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
)
|
| 70 |
visual_result_2 = sahi.utils.cv.visualize_object_predictions(
|
| 71 |
image=numpy.array(image),
|
|
@@ -94,41 +99,39 @@ def sahi_yolo_inference(
|
|
| 94 |
# sliced inference
|
| 95 |
|
| 96 |
|
| 97 |
-
|
| 98 |
-
|
| 99 |
inputs = [
|
| 100 |
-
gr.
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
["NMS", "GREEDYNMM"],
|
| 108 |
type="value",
|
| 109 |
-
|
| 110 |
label="postprocess_type",
|
| 111 |
),
|
| 112 |
-
gr.
|
| 113 |
-
|
| 114 |
-
),
|
| 115 |
-
gr.inputs.Number(default=0.5, label="postprocess_match_threshold"),
|
| 116 |
-
gr.inputs.Checkbox(default=True, label="postprocess_class_agnostic"),
|
| 117 |
]
|
| 118 |
|
| 119 |
-
outputs = [
|
| 120 |
-
gr.outputs.Image(type="pil", label="Output")
|
| 121 |
-
]
|
| 122 |
|
| 123 |
title = "Small Object Detection with SAHI + YOLOv5"
|
| 124 |
description = "SAHI + YOLOv5 demo for small object detection. Upload an image or click an example image to use."
|
| 125 |
article = "<p style='text-align: center'>SAHI is a lightweight vision library for performing large scale object detection/ instance segmentation.. <a href='https://github.com/obss/sahi'>SAHI Github</a> | <a href='https://medium.com/codable/sahi-a-vision-library-for-performing-sliced-inference-on-large-images-small-objects-c8b086af3b80'>SAHI Blog</a> | <a href='https://github.com/fcakyon/yolov5-pip'>YOLOv5 Github</a> </p>"
|
| 126 |
examples = [
|
| 127 |
-
[model_types[
|
| 128 |
-
[model_types[
|
| 129 |
-
[model_types[
|
| 130 |
-
[model_types[
|
| 131 |
-
|
| 132 |
]
|
| 133 |
gr.Interface(
|
| 134 |
sahi_yolo_inference,
|
|
|
|
| 11 |
|
| 12 |
IMAGE_SIZE = 640
|
| 13 |
|
| 14 |
+
model_path = hf_hub_download(
|
| 15 |
+
"deprem-ml/Binafarktespit-yolo5x-v1-xview", filename="last.pt", revision="main"
|
| 16 |
+
)
|
| 17 |
|
| 18 |
|
| 19 |
+
current_device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 20 |
+
model_types = ["YOLOv5", "YOLOv5 + SAHI"]
|
| 21 |
# Model
|
| 22 |
model = AutoDetectionModel.from_pretrained(
|
| 23 |
+
model_type="yolov5",
|
| 24 |
+
model_path=model_path,
|
| 25 |
+
device=current_device,
|
| 26 |
+
confidence_threshold=0.5,
|
| 27 |
+
image_size=IMAGE_SIZE,
|
| 28 |
)
|
| 29 |
|
| 30 |
|
|
|
|
| 33 |
image,
|
| 34 |
slice_height=512,
|
| 35 |
slice_width=512,
|
| 36 |
+
overlap_height_ratio=0.1,
|
| 37 |
+
overlap_width_ratio=0.1,
|
| 38 |
+
postprocess_type="NMS",
|
| 39 |
+
postprocess_match_metric="IOU",
|
| 40 |
+
postprocess_match_threshold=0.25,
|
| 41 |
postprocess_class_agnostic=False,
|
| 42 |
):
|
| 43 |
|
| 44 |
+
# image_width, image_height = image.size
|
| 45 |
# sliced_bboxes = sahi.slicing.get_slice_bboxes(
|
| 46 |
# image_height,
|
| 47 |
# image_width,
|
|
|
|
| 56 |
# f"{len(sliced_bboxes)} slices are too much for huggingface spaces, try smaller slice size."
|
| 57 |
# )
|
| 58 |
|
| 59 |
+
rect_th = None or max(round(sum(image.size) / 2 * 0.0001), 1)
|
| 60 |
+
text_th = None or max(rect_th - 2, 1)
|
|
|
|
| 61 |
|
| 62 |
if "SAHI" in model_type:
|
| 63 |
prediction_result_2 = sahi.predict.get_sliced_prediction(
|
| 64 |
+
image=image,
|
| 65 |
+
detection_model=model,
|
| 66 |
+
slice_height=int(slice_height),
|
| 67 |
+
slice_width=int(slice_width),
|
| 68 |
+
overlap_height_ratio=overlap_height_ratio,
|
| 69 |
+
overlap_width_ratio=overlap_width_ratio,
|
| 70 |
+
postprocess_type=postprocess_type,
|
| 71 |
+
postprocess_match_metric=postprocess_match_metric,
|
| 72 |
+
postprocess_match_threshold=postprocess_match_threshold,
|
| 73 |
+
postprocess_class_agnostic=postprocess_class_agnostic,
|
| 74 |
)
|
| 75 |
visual_result_2 = sahi.utils.cv.visualize_object_predictions(
|
| 76 |
image=numpy.array(image),
|
|
|
|
| 99 |
# sliced inference
|
| 100 |
|
| 101 |
|
|
|
|
|
|
|
| 102 |
inputs = [
|
| 103 |
+
gr.Dropdown(
|
| 104 |
+
choices=model_types,
|
| 105 |
+
label="Choose Model Type",
|
| 106 |
+
type="value",
|
| 107 |
+
value=model_types[1],
|
| 108 |
+
),
|
| 109 |
+
gr.Image(type="pil", label="Original Image"),
|
| 110 |
+
gr.Number(default=512, label="slice_height"),
|
| 111 |
+
gr.Number(default=512, label="slice_width"),
|
| 112 |
+
gr.Number(default=0.1, label="overlap_height_ratio"),
|
| 113 |
+
gr.Number(default=0.1, label="overlap_width_ratio"),
|
| 114 |
+
gr.Dropdown(
|
| 115 |
["NMS", "GREEDYNMM"],
|
| 116 |
type="value",
|
| 117 |
+
value="NMS",
|
| 118 |
label="postprocess_type",
|
| 119 |
),
|
| 120 |
+
gr.Dropdown(["IOU", "IOS"], type="value", value="IOU", label="postprocess_type"),
|
| 121 |
+
gr.Number(default=0.5, label="postprocess_match_threshold"),
|
| 122 |
+
gr.Checkbox(default=True, label="postprocess_class_agnostic"),
|
|
|
|
|
|
|
| 123 |
]
|
| 124 |
|
| 125 |
+
outputs = [gr.outputs.Image(type="pil", label="Output")]
|
|
|
|
|
|
|
| 126 |
|
| 127 |
title = "Small Object Detection with SAHI + YOLOv5"
|
| 128 |
description = "SAHI + YOLOv5 demo for small object detection. Upload an image or click an example image to use."
|
| 129 |
article = "<p style='text-align: center'>SAHI is a lightweight vision library for performing large scale object detection/ instance segmentation.. <a href='https://github.com/obss/sahi'>SAHI Github</a> | <a href='https://medium.com/codable/sahi-a-vision-library-for-performing-sliced-inference-on-large-images-small-objects-c8b086af3b80'>SAHI Blog</a> | <a href='https://github.com/fcakyon/yolov5-pip'>YOLOv5 Github</a> </p>"
|
| 130 |
examples = [
|
| 131 |
+
[model_types[1], "26.jpg", 512, 512, 0.1, 0.1, "NMS", "IOU", 0.25, False],
|
| 132 |
+
[model_types[1], "27.jpg", 512, 512, 0.1, 0.1, "NMS", "IOU", 0.25, False],
|
| 133 |
+
[model_types[1], "28.jpg", 512, 512, 0.1, 0.1, "NMS", "IOU", 0.25, False],
|
| 134 |
+
[model_types[1], "31.jpg", 512, 512, 0.1, 0.1, "NMS", "IOU", 0.25, False],
|
|
|
|
| 135 |
]
|
| 136 |
gr.Interface(
|
| 137 |
sahi_yolo_inference,
|
requirements.txt
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
torch==1.10.2+cpu
|
| 2 |
torchvision==0.11.3+cpu
|
| 3 |
-f https://download.pytorch.org/whl/torch_stable.html
|
| 4 |
-
yolov5==
|
| 5 |
-
sahi==0.11.
|
|
|
|
| 1 |
torch==1.10.2+cpu
|
| 2 |
torchvision==0.11.3+cpu
|
| 3 |
-f https://download.pytorch.org/whl/torch_stable.html
|
| 4 |
+
yolov5==7.0.8
|
| 5 |
+
sahi==0.11.11
|