Update app.py
Browse files
app.py
CHANGED
|
@@ -13,19 +13,18 @@ def convert_params(params):
|
|
| 13 |
return "%s %s" % (s, size_name[i])
|
| 14 |
|
| 15 |
# Get Hugging Face model configuration and update the parameters
|
| 16 |
-
def get_hf_model_args(hf_model_name_or_path
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
sequence_length = config.get("max_position_embeddings", sequence_length)
|
| 29 |
|
| 30 |
return {
|
| 31 |
"num_layers": num_layers,
|
|
@@ -37,16 +36,17 @@ def get_hf_model_args(hf_model_name_or_path, num_layers, hidden_size, num_attent
|
|
| 37 |
|
| 38 |
# ---- Memory Calculation ---- #
|
| 39 |
def calc_mem(hf_model_name_or_path, num_gpus, tensor_parallel_size, pipeline_parallel_size, batch_size_per_gpu, sequence_length, vocab_size, hidden_size, num_attention_heads, num_layers, ffn_expansion_factor, is_mixed_precision, misc_mem_gib):
|
| 40 |
-
model_params, hf_error = get_hf_model_args(hf_model_name_or_path
|
| 41 |
|
| 42 |
if hf_error:
|
| 43 |
return hf_error
|
| 44 |
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
|
|
|
| 50 |
|
| 51 |
dp_degree = num_gpus / (tensor_parallel_size * pipeline_parallel_size)
|
| 52 |
embed_params = 2 * vocab_size * hidden_size
|
|
@@ -62,37 +62,19 @@ def calc_mem(hf_model_name_or_path, num_gpus, tensor_parallel_size, pipeline_par
|
|
| 62 |
|
| 63 |
return f"Per-GPU Memory Required for Training: {per_gpu_mem_gib:.2f} GiB"
|
| 64 |
|
| 65 |
-
# ----
|
| 66 |
-
def
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
ffn_dense_params = num_mlp_linears * ffn_expansion_factor * (num_layers - num_expert_layers) * hidden_size * hidden_size
|
| 79 |
-
ffn_params = ffn_expert_params + ffn_dense_params
|
| 80 |
-
gating_params = num_expert_layers * hidden_size * num_experts
|
| 81 |
-
else:
|
| 82 |
-
ffn_params = num_mlp_linears * ffn_expansion_factor * num_layers * hidden_size * hidden_size
|
| 83 |
-
|
| 84 |
-
total_params = embedding_params + attention_params + ffn_params + position_embedding_params + layernorm_params
|
| 85 |
-
|
| 86 |
-
if moe:
|
| 87 |
-
total_params += gating_params
|
| 88 |
-
|
| 89 |
-
return f"""
|
| 90 |
-
Embedding parameters: {convert_params(embedding_params)}
|
| 91 |
-
Attention parameters: {convert_params(attention_params)}
|
| 92 |
-
FFN parameters: {convert_params(ffn_params)}
|
| 93 |
-
{'Gating parameters: ' + convert_params(gating_params) if moe else ''}
|
| 94 |
-
Total Params in the Model: {convert_params(total_params)}
|
| 95 |
-
"""
|
| 96 |
|
| 97 |
# ---- Gradio Interface ---- #
|
| 98 |
with gr.Blocks() as demo:
|
|
@@ -119,6 +101,10 @@ with gr.Blocks() as demo:
|
|
| 119 |
inputs=[hf_model_name_or_path, num_gpus, tensor_parallel_size, pipeline_parallel_size, batch_size_per_gpu, sequence_length, vocab_size, hidden_size, num_attention_heads, num_layers, ffn_expansion_factor, is_mixed_precision, misc_mem_gib],
|
| 120 |
outputs=memory_result)
|
| 121 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
# Parameter Calculation Tab
|
| 123 |
with gr.TabItem("Parameter Calculation"):
|
| 124 |
vocab_size = gr.Number(label="Vocab Size", value=51200)
|
|
|
|
| 13 |
return "%s %s" % (s, size_name[i])
|
| 14 |
|
| 15 |
# Get Hugging Face model configuration and update the parameters
|
| 16 |
+
def get_hf_model_args(hf_model_name_or_path):
|
| 17 |
+
try:
|
| 18 |
+
config = AutoConfig.from_pretrained(hf_model_name_or_path, trust_remote_code=True).to_dict()
|
| 19 |
+
except Exception as e:
|
| 20 |
+
return None, f"Error fetching Hugging Face model: {str(e)}"
|
| 21 |
+
|
| 22 |
+
# Extract relevant values from the config
|
| 23 |
+
num_layers = config.get("num_hidden_layers", None)
|
| 24 |
+
hidden_size = config.get("hidden_size", None)
|
| 25 |
+
num_attention_heads = config.get("num_attention_heads", None)
|
| 26 |
+
vocab_size = config.get("vocab_size", None)
|
| 27 |
+
sequence_length = config.get("max_position_embeddings", None)
|
|
|
|
| 28 |
|
| 29 |
return {
|
| 30 |
"num_layers": num_layers,
|
|
|
|
| 36 |
|
| 37 |
# ---- Memory Calculation ---- #
|
| 38 |
def calc_mem(hf_model_name_or_path, num_gpus, tensor_parallel_size, pipeline_parallel_size, batch_size_per_gpu, sequence_length, vocab_size, hidden_size, num_attention_heads, num_layers, ffn_expansion_factor, is_mixed_precision, misc_mem_gib):
|
| 39 |
+
model_params, hf_error = get_hf_model_args(hf_model_name_or_path) if hf_model_name_or_path else (None, None)
|
| 40 |
|
| 41 |
if hf_error:
|
| 42 |
return hf_error
|
| 43 |
|
| 44 |
+
if model_params:
|
| 45 |
+
num_layers = model_params["num_layers"] or num_layers
|
| 46 |
+
hidden_size = model_params["hidden_size"] or hidden_size
|
| 47 |
+
num_attention_heads = model_params["num_attention_heads"] or num_attention_heads
|
| 48 |
+
vocab_size = model_params["vocab_size"] or vocab_size
|
| 49 |
+
sequence_length = model_params["sequence_length"] or sequence_length
|
| 50 |
|
| 51 |
dp_degree = num_gpus / (tensor_parallel_size * pipeline_parallel_size)
|
| 52 |
embed_params = 2 * vocab_size * hidden_size
|
|
|
|
| 62 |
|
| 63 |
return f"Per-GPU Memory Required for Training: {per_gpu_mem_gib:.2f} GiB"
|
| 64 |
|
| 65 |
+
# ---- Update Gradio inputs with Hugging Face model config ---- #
|
| 66 |
+
def update_from_hf_model(hf_model_name_or_path):
|
| 67 |
+
model_params, hf_error = get_hf_model_args(hf_model_name_or_path)
|
| 68 |
+
|
| 69 |
+
if hf_error:
|
| 70 |
+
return gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), hf_error
|
| 71 |
+
|
| 72 |
+
return (gr.update(value=model_params["num_layers"]),
|
| 73 |
+
gr.update(value=model_params["hidden_size"]),
|
| 74 |
+
gr.update(value=model_params["num_attention_heads"]),
|
| 75 |
+
gr.update(value=model_params["vocab_size"]),
|
| 76 |
+
gr.update(value=model_params["sequence_length"]),
|
| 77 |
+
"")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
# ---- Gradio Interface ---- #
|
| 80 |
with gr.Blocks() as demo:
|
|
|
|
| 101 |
inputs=[hf_model_name_or_path, num_gpus, tensor_parallel_size, pipeline_parallel_size, batch_size_per_gpu, sequence_length, vocab_size, hidden_size, num_attention_heads, num_layers, ffn_expansion_factor, is_mixed_precision, misc_mem_gib],
|
| 102 |
outputs=memory_result)
|
| 103 |
|
| 104 |
+
hf_model_name_or_path.change(fn=update_from_hf_model,
|
| 105 |
+
inputs=[hf_model_name_or_path],
|
| 106 |
+
outputs=[num_layers, hidden_size, num_attention_heads, vocab_size, sequence_length, memory_result])
|
| 107 |
+
|
| 108 |
# Parameter Calculation Tab
|
| 109 |
with gr.TabItem("Parameter Calculation"):
|
| 110 |
vocab_size = gr.Number(label="Vocab Size", value=51200)
|