LorAI / app.py
edeler's picture
Upload 8 files
a2ee4a0 verified
raw
history blame
23.9 kB
import os
import json
import gc
import traceback
from typing import Optional, Tuple, Any
import torch
import gradio as gr
import supervision as sv
from PIL import Image
# Try to import optional dependencies
try:
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
AutoModelForImageTextToText,
AutoProcessor,
BitsAndBytesConfig,
)
except Exception:
AutoModelForCausalLM = None
AutoTokenizer = None
AutoModelForImageTextToText = None
AutoProcessor = None
BitsAndBytesConfig = None
# Try to import huggingface_hub for model downloading
try:
from huggingface_hub import hf_hub_download
except ImportError:
hf_hub_download = None
# Import RF-DETR (assumes it's in the same directory or installed)
try:
from rfdetr import RFDETRMedium
except ImportError:
print("Warning: RF-DETR not found. Please ensure it's properly installed.")
RFDETRMedium = None
# ============================================================================
# Configuration for Hugging Face Spaces
# ============================================================================
class SpacesConfig:
"""Configuration optimized for Hugging Face Spaces."""
def __init__(self):
# Get HF token from environment
hf_token = os.environ.get('HF_TOKEN') or os.environ.get('HUGGINGFACE_TOKEN')
self.settings = {
'results_dir': '/tmp/results',
'checkpoint': None,
'hf_model_repo': 'edeler/lorai', # Hugging Face model repository
'hf_model_filename': 'lorai.pth',
'hf_token': hf_token,
'resolution': 576,
'threshold': 0.7,
'use_llm': True,
'llm_model_id': 'google/medgemma-4b-it',
'llm_max_new_tokens': 200,
'llm_temperature': 0.2,
'llm_4bit': True,
'enable_caching': True,
'max_cache_size': 100,
}
def get(self, key: str, default: Any = None) -> Any:
return self.settings.get(key, default)
def set_hf_model_repo(self, repo_id: str, filename: str = 'lorai.pth'):
"""Set Hugging Face model repository."""
self.settings['hf_model_repo'] = repo_id
self.settings['hf_model_filename'] = filename
# ============================================================================
# Memory Management (simplified for Spaces)
# ============================================================================
class MemoryManager:
"""Simplified memory management for Spaces."""
def __init__(self):
self.memory_thresholds = {
'gpu_warning': 0.8,
'system_warning': 0.85,
}
def cleanup_memory(self, force: bool = False) -> None:
"""Perform memory cleanup."""
try:
gc.collect()
if torch and torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
except Exception as e:
print(f"Memory cleanup error: {e}")
# Global memory manager
memory_manager = MemoryManager()
# ============================================================================
# Model Loading
# ============================================================================
def find_checkpoint(hf_repo: Optional[str] = None, hf_filename: str = 'lorai.pth') -> Optional[str]:
"""Find RF-DETR checkpoint in various locations or download from Hugging Face Hub."""
# First check if we should download from Hugging Face
repo_id = hf_repo or os.environ.get('HF_MODEL_REPO')
if repo_id and hf_hub_download is not None:
try:
print(f"Downloading checkpoint from Hugging Face Hub: {repo_id}/{hf_filename}")
checkpoint_path = hf_hub_download(
repo_id=repo_id,
filename=hf_filename,
cache_dir="/tmp/hf_cache"
)
print(f"βœ“ Downloaded checkpoint to: {checkpoint_path}")
return checkpoint_path
except Exception as e:
print(f"Warning: Failed to download from Hugging Face Hub: {e}")
print("Falling back to local checkpoints...")
# Fall back to local file search
candidates = [
"lorai.pth", # Current directory
"rf-detr-medium.pth",
"/tmp/results/checkpoint_best_total.pth",
"/tmp/results/checkpoint_best_ema.pth",
"/tmp/results/checkpoint_best_regular.pth",
"/tmp/results/checkpoint.pth",
]
for path in candidates:
if os.path.isfile(path):
print(f"Found local checkpoint: {path}")
return path
return None
def load_model(checkpoint_path: str, resolution: int):
"""Load RF-DETR model."""
if RFDETRMedium is None:
raise RuntimeError("RF-DETR not available. Please install it properly.")
model = RFDETRMedium(pretrain_weights=checkpoint_path, resolution=resolution)
try:
model.optimize_for_inference()
except Exception:
pass
return model
# ============================================================================
# LLM Integration
# ============================================================================
class TextGenerator:
"""Simplified text generator for Spaces."""
def __init__(self, model_id: str, max_tokens: int = 200, temperature: float = 0.2):
self.model_id = model_id
self.max_tokens = max_tokens
self.temperature = temperature
self.model = None
self.tokenizer = None
self.processor = None
self.is_multimodal = False
def load_model(self, hf_token: Optional[str] = None):
"""Load the LLM model."""
if self.model is not None:
return
if (AutoModelForCausalLM is None and AutoModelForImageTextToText is None):
raise RuntimeError("Transformers not available")
# Clear memory before loading
memory_manager.cleanup_memory()
print(f"Loading model: {self.model_id}")
model_kwargs = {
"device_map": "auto",
"low_cpu_mem_usage": True,
}
# Add token if provided
if hf_token:
model_kwargs["token"] = hf_token
if torch and torch.cuda.is_available():
model_kwargs["torch_dtype"] = torch.bfloat16
# Use 4-bit quantization if available
if BitsAndBytesConfig is not None:
try:
compute_dtype = torch.bfloat16 if torch and torch.cuda.is_available() else torch.float16
model_kwargs["quantization_config"] = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=compute_dtype,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4"
)
model_kwargs["torch_dtype"] = compute_dtype
except Exception:
pass
# Check if it's a multimodal model
is_multimodal = "medgemma" in self.model_id.lower()
if is_multimodal and AutoModelForImageTextToText is not None and AutoProcessor is not None:
self.processor = AutoProcessor.from_pretrained(self.model_id, token=hf_token)
self.model = AutoModelForImageTextToText.from_pretrained(self.model_id, **model_kwargs)
self.is_multimodal = True
elif AutoModelForCausalLM is not None and AutoTokenizer is not None:
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id, token=hf_token)
self.model = AutoModelForCausalLM.from_pretrained(self.model_id, **model_kwargs)
self.is_multimodal = False
else:
raise RuntimeError("Required model classes not available")
print("βœ“ Model loaded successfully")
def generate(self, text: str, image: Optional[Image.Image] = None, hf_token: Optional[str] = None) -> str:
"""Generate text using the loaded model."""
self.load_model(hf_token)
if self.model is None:
return f"[Model not loaded: {text}]"
try:
# Create messages
system_text = "You are a concise medical assistant. Provide a brief, clear summary of detection results. Avoid repetition and be direct. Do not give medical advice."
user_text = f"Summarize these detection results in 3 clear sentences:\n\n{text}"
if self.is_multimodal:
# Multimodal model
user_content = [{"type": "text", "text": user_text}]
if image is not None:
user_content.append({"type": "image", "image": image})
messages = [
{"role": "system", "content": [{"type": "text", "text": system_text}]},
{"role": "user", "content": user_content},
]
inputs = self.processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
)
if torch:
inputs = inputs.to(self.model.device, dtype=torch.bfloat16)
with torch.inference_mode():
generation = self.model.generate(
**inputs,
max_new_tokens=self.max_tokens,
do_sample=self.temperature > 0,
temperature=max(0.01, self.temperature) if self.temperature > 0 else None,
use_cache=False,
)
input_len = inputs["input_ids"].shape[-1]
generation = generation[0][input_len:]
decoded = self.processor.decode(generation, skip_special_tokens=True)
return decoded.strip()
else:
# Text-only model
messages = [
{"role": "system", "content": system_text},
{"role": "user", "content": user_text},
]
inputs = self.tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
)
inputs = inputs.to(self.model.device)
with torch.inference_mode():
generation = self.model.generate(
**inputs,
max_new_tokens=self.max_tokens,
do_sample=self.temperature > 0,
temperature=max(0.01, self.temperature) if self.temperature > 0 else None,
use_cache=False,
)
input_len = inputs["input_ids"].shape[-1]
generation = generation[0][input_len:]
decoded = self.tokenizer.decode(generation, skip_special_tokens=True)
return decoded.strip()
except Exception as e:
error_msg = f"[Generation error: {e}]"
print(f"Generation error: {traceback.format_exc()}")
return f"{error_msg}\n\n{text}"
# ============================================================================
# Application State
# ============================================================================
class AppState:
"""Application state for Spaces."""
def __init__(self):
self.config = SpacesConfig()
self.model = None
self.class_names = None
self.text_generator = None
def load_model(self):
"""Load the detection model."""
if self.model is not None:
return
checkpoint = find_checkpoint(
hf_repo=self.config.get('hf_model_repo'),
hf_filename=self.config.get('hf_model_filename', 'lorai.pth')
)
if not checkpoint:
hf_repo = self.config.get('hf_model_repo') or os.environ.get('HF_MODEL_REPO')
if hf_repo:
raise FileNotFoundError(
f"No RF-DETR checkpoint found. Could not download from '{hf_repo}'. "
"Please check the repository ID and ensure the model file exists."
)
else:
raise FileNotFoundError(
"No RF-DETR checkpoint found. Please either:\n"
"1. Set HF_MODEL_REPO environment variable (e.g., 'edeler/lorai'), or\n"
"2. Upload lorai.pth to your Space's root directory"
)
print(f"Loading RF-DETR from: {checkpoint}")
self.model = load_model(checkpoint, self.config.get('resolution'))
# Try to load class names
try:
results_json = "/tmp/results/results.json"
if os.path.isfile(results_json):
with open(results_json, 'r') as f:
data = json.load(f)
classes = []
for split in ("valid", "test", "train"):
if "class_map" in data and split in data["class_map"]:
for item in data["class_map"][split]:
name = item.get("class")
if name and name != "all" and name not in classes:
classes.append(name)
self.class_names = classes if classes else None
except Exception:
pass
print("βœ“ RF-DETR model loaded")
def preload_all_models(self):
"""Preload both detection and LLM models into VRAM at startup."""
print("=" * 60)
print("Preloading all models into VRAM...")
print("=" * 60)
# Load detection model
print("\n[1/2] Loading RF-DETR detection model...")
self.load_model()
# Load LLM model
if self.config.get('use_llm'):
print("\n[2/2] Loading MedGemma LLM model...")
try:
model_size = "4B" # Default to 4B model
generator = self.get_text_generator(model_size)
hf_token = self.config.get('hf_token')
generator.load_model(hf_token)
print("βœ“ MedGemma model loaded and ready")
except Exception as e:
print(f"⚠️ Warning: Could not preload LLM model: {e}")
print("LLM will be loaded on first use instead")
print("\n" + "=" * 60)
print("βœ“ All models loaded and ready in VRAM!")
print("=" * 60 + "\n")
def get_text_generator(self, model_size: str = "4B") -> TextGenerator:
"""Get or create text generator."""
# Determine model ID based on size selection
model_id = 'google/medgemma-27b-it' if model_size == "27B" else 'google/medgemma-4b-it'
# Check if we need to create a new generator for different model size
if (self.text_generator is None or
hasattr(self.text_generator, 'model_id') and
self.text_generator.model_id != model_id):
max_tokens = self.config.get('llm_max_new_tokens')
temperature = self.config.get('llm_temperature')
self.text_generator = TextGenerator(model_id, max_tokens, temperature)
return self.text_generator
# ============================================================================
# UI and Inference
# ============================================================================
def create_detection_interface():
"""Create the Gradio interface."""
# Color palette for annotations
COLOR_PALETTE = sv.ColorPalette.from_hex([
"#ffff00", "#ff9b00", "#ff66ff", "#3399ff", "#ff66b2",
"#ff8080", "#b266ff", "#9999ff", "#66ffff", "#33ff99",
"#66ff66", "#99ff00",
])
def annotate_image(image: Image.Image, threshold: float, model_size: str = "4B") -> Tuple[Image.Image, str]:
"""Process an image and return annotated version with description."""
if image is None:
return None, "Please upload an image."
try:
# Models are preloaded at startup, but check just in case
if app_state.model is None:
app_state.load_model()
# Run detection
detections = app_state.model.predict(image, threshold=threshold)
# Annotate image
bbox_annotator = sv.BoxAnnotator(color=COLOR_PALETTE, thickness=2)
label_annotator = sv.LabelAnnotator(text_scale=0.5, text_color=sv.Color.BLACK)
labels = []
for i in range(len(detections)):
class_id = int(detections.class_id[i]) if detections.class_id is not None else None
conf = float(detections.confidence[i]) if detections.confidence is not None else 0.0
if app_state.class_names and class_id is not None:
if 0 <= class_id < len(app_state.class_names):
label_name = app_state.class_names[class_id]
else:
label_name = str(class_id)
else:
label_name = str(class_id) if class_id is not None else "object"
labels.append(f"{label_name} {conf:.2f}")
annotated = image.copy()
annotated = bbox_annotator.annotate(annotated, detections)
annotated = label_annotator.annotate(annotated, detections, labels)
# Generate description
description = f"Found {len(detections)} detections above threshold {threshold}:\n\n"
if len(detections) > 0:
counts = {}
for i in range(len(detections)):
class_id = int(detections.class_id[i]) if detections.class_id is not None else None
if app_state.class_names and class_id is not None:
if 0 <= class_id < len(app_state.class_names):
name = app_state.class_names[class_id]
else:
name = str(class_id)
else:
name = str(class_id) if class_id is not None else "object"
counts[name] = counts.get(name, 0) + 1
for name, count in counts.items():
description += f"- {count}Γ— {name}\n"
# Use LLM for description if enabled
if app_state.config.get('use_llm'):
try:
generator = app_state.get_text_generator(model_size)
hf_token = app_state.config.get('hf_token')
# Model is already preloaded, just generate
llm_description = generator.generate(description, image=annotated, hf_token=hf_token)
description = llm_description
except Exception as e:
print(f"LLM generation failed: {e}")
# Just use the basic description if LLM fails
pass
else:
description += "No objects detected above the confidence threshold."
return annotated, description
except Exception as e:
error_msg = f"Error processing image: {str(e)}"
print(f"Processing error: {traceback.format_exc()}")
return None, error_msg
# Create the interface
with gr.Blocks(title="Medical Image Analysis", theme=gr.themes.Soft()) as demo:
gr.Markdown("# πŸ₯ Medical Image Analysis")
gr.Markdown("Upload a medical image to detect and analyze findings using AI.")
# Check if HF token is available
hf_token = app_state.config.get('hf_token')
if not hf_token:
gr.Markdown("⚠️ **Note:** HF_TOKEN not set. AI text generation will be disabled. Detection will still work.")
else:
gr.Markdown("βœ… **AI-powered analysis enabled** using MedGemma 4B")
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="Upload Image", height=400)
threshold_slider = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.7,
step=0.05,
label="Confidence Threshold",
info="Higher values = fewer but more confident detections"
)
model_size_radio = gr.Radio(
choices=["4B"],
value="4B",
label="MedGemma Model Size",
info="Using MedGemma 4B for AI-generated analysis",
visible=False # Hide since only one option
)
analyze_btn = gr.Button("πŸ” Analyze Image", variant="primary")
# Example images
gr.Examples(
examples=[
["1.jpg"],
["2.jpg"],
["3.jpg"],
],
inputs=input_image,
label="Example Images",
examples_per_page=3
)
with gr.Column():
output_image = gr.Image(type="pil", label="Results", height=400)
output_text = gr.Textbox(
label="Analysis Results",
lines=8,
max_lines=15,
show_copy_button=True
)
# Wire up the interface
analyze_btn.click(
fn=annotate_image,
inputs=[input_image, threshold_slider, model_size_radio],
outputs=[output_image, output_text]
)
# Also run when image is uploaded
input_image.change(
fn=annotate_image,
inputs=[input_image, threshold_slider, model_size_radio],
outputs=[output_image, output_text]
)
# Footer
gr.Markdown("---")
return demo
# ============================================================================
# Main Application
# ============================================================================
# Global app state
app_state = AppState()
def main():
"""Main entry point for the Spaces app."""
print("πŸš€ Starting Medical Image Analysis App")
# Ensure results directory exists
os.makedirs(app_state.config.get('results_dir'), exist_ok=True)
# Preload all models into VRAM
try:
app_state.preload_all_models()
except Exception as e:
print(f"⚠️ Warning: Failed to preload models: {e}")
print("Models will be loaded on first use instead")
# Create and launch the interface
demo = create_detection_interface()
# Launch with Spaces-optimized settings
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False, # Spaces handles this
show_error=True,
show_api=False,
)
if __name__ == "__main__":
main()