Spaces:
Running
on
A10G
Running
on
A10G
Split/shard support
#65
by
SixOpen
- opened
app.py
CHANGED
|
@@ -28,11 +28,51 @@ def script_to_use(model_id, api):
|
|
| 28 |
arch = arch[0]
|
| 29 |
return "convert.py" if arch in LLAMA_LIKE_ARCHS else "convert-hf-to-gguf.py"
|
| 30 |
|
| 31 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
if oauth_token.token is None:
|
| 33 |
raise ValueError("You must be logged in to use GGUF-my-repo")
|
| 34 |
model_name = model_id.split('/')[-1]
|
| 35 |
-
fp16 = f"{model_name}
|
| 36 |
|
| 37 |
try:
|
| 38 |
api = HfApi(token=oauth_token.token)
|
|
@@ -54,7 +94,9 @@ def process_model(model_id, q_method, private_repo, oauth_token: gr.OAuthToken |
|
|
| 54 |
dl_pattern += pattern
|
| 55 |
|
| 56 |
api.snapshot_download(repo_id=model_id, local_dir=model_name, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
|
| 57 |
-
print("Model downloaded
|
|
|
|
|
|
|
| 58 |
|
| 59 |
conversion_script = script_to_use(model_id, api)
|
| 60 |
fp16_conversion = f"python llama.cpp/{conversion_script} {model_name} --outtype f16 --outfile {fp16}"
|
|
@@ -62,17 +104,21 @@ def process_model(model_id, q_method, private_repo, oauth_token: gr.OAuthToken |
|
|
| 62 |
print(result)
|
| 63 |
if result.returncode != 0:
|
| 64 |
raise Exception(f"Error converting to fp16: {result.stderr}")
|
| 65 |
-
print("Model converted to fp16
|
|
|
|
| 66 |
|
| 67 |
-
|
| 68 |
-
|
|
|
|
|
|
|
| 69 |
result = subprocess.run(quantise_ggml, shell=True, capture_output=True)
|
| 70 |
if result.returncode != 0:
|
| 71 |
raise Exception(f"Error quantizing: {result.stderr}")
|
| 72 |
-
print("
|
|
|
|
| 73 |
|
| 74 |
# Create empty repo
|
| 75 |
-
new_repo_url = api.create_repo(repo_id=f"{model_name}-{q_method}-GGUF", exist_ok=True, private=private_repo)
|
| 76 |
new_repo_id = new_repo_url.repo_id
|
| 77 |
print("Repo created successfully!", new_repo_url)
|
| 78 |
|
|
@@ -90,50 +136,49 @@ def process_model(model_id, q_method, private_repo, oauth_token: gr.OAuthToken |
|
|
| 90 |
This model was converted to GGUF format from [`{model_id}`](https://huggingface.co/{model_id}) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
|
| 91 |
Refer to the [original model card](https://huggingface.co/{model_id}) for more details on the model.
|
| 92 |
## Use with llama.cpp
|
| 93 |
-
|
| 94 |
Install llama.cpp through brew.
|
| 95 |
-
|
| 96 |
```bash
|
| 97 |
brew install ggerganov/ggerganov/llama.cpp
|
| 98 |
```
|
| 99 |
Invoke the llama.cpp server or the CLI.
|
| 100 |
-
|
| 101 |
CLI:
|
| 102 |
-
|
| 103 |
```bash
|
| 104 |
-
llama-cli --hf-repo {new_repo_id} --model {
|
| 105 |
```
|
| 106 |
-
|
| 107 |
Server:
|
| 108 |
-
|
| 109 |
```bash
|
| 110 |
-
llama-server --hf-repo {new_repo_id} --model {
|
| 111 |
```
|
| 112 |
-
|
| 113 |
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
|
| 114 |
-
|
| 115 |
```
|
| 116 |
-
git clone https://github.com/ggerganov/llama.cpp &&
|
| 117 |
-
cd llama.cpp &&
|
| 118 |
-
make &&
|
| 119 |
-
./main -m {
|
| 120 |
```
|
| 121 |
"""
|
| 122 |
)
|
| 123 |
-
card.save(
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
|
| 131 |
api.upload_file(
|
| 132 |
-
path_or_fileobj=f"
|
| 133 |
-
path_in_repo="README.md",
|
| 134 |
repo_id=new_repo_id,
|
| 135 |
)
|
| 136 |
-
print("Uploaded successfully!")
|
| 137 |
|
| 138 |
return (
|
| 139 |
f'Find your repo <a href=\'{new_repo_url}\' target="_blank" style="text-decoration:underline">here</a>',
|
|
@@ -147,38 +192,75 @@ def process_model(model_id, q_method, private_repo, oauth_token: gr.OAuthToken |
|
|
| 147 |
|
| 148 |
|
| 149 |
# Create Gradio interface
|
| 150 |
-
iface = gr.Interface(
|
| 151 |
-
fn=process_model,
|
| 152 |
-
inputs=[
|
| 153 |
-
HuggingfaceHubSearch(
|
| 154 |
-
label="Hub Model ID",
|
| 155 |
-
placeholder="Search for model id on Huggingface",
|
| 156 |
-
search_type="model",
|
| 157 |
-
),
|
| 158 |
-
gr.Dropdown(
|
| 159 |
-
["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"],
|
| 160 |
-
label="Quantization Method",
|
| 161 |
-
info="GGML quantisation type",
|
| 162 |
-
value="Q4_K_M",
|
| 163 |
-
filterable=False
|
| 164 |
-
),
|
| 165 |
-
gr.Checkbox(
|
| 166 |
-
value=False,
|
| 167 |
-
label="Private Repo",
|
| 168 |
-
info="Create a private repo under your username."
|
| 169 |
-
),
|
| 170 |
-
],
|
| 171 |
-
outputs=[
|
| 172 |
-
gr.Markdown(label="output"),
|
| 173 |
-
gr.Image(show_label=False),
|
| 174 |
-
],
|
| 175 |
-
title="Create your own GGUF Quants, blazingly fast β‘!",
|
| 176 |
-
description="The space takes an HF repo as an input, quantises it and creates a Public repo containing the selected quant under your HF user namespace.",
|
| 177 |
-
)
|
| 178 |
with gr.Blocks() as demo:
|
| 179 |
gr.Markdown("You must be logged in to use GGUF-my-repo.")
|
| 180 |
gr.LoginButton(min_width=250)
|
| 181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
|
| 183 |
def restart_space():
|
| 184 |
HfApi().restart_space(repo_id="ggml-org/gguf-my-repo", token=HF_TOKEN, factory_reboot=True)
|
|
|
|
| 28 |
arch = arch[0]
|
| 29 |
return "convert.py" if arch in LLAMA_LIKE_ARCHS else "convert-hf-to-gguf.py"
|
| 30 |
|
| 31 |
+
def split_upload_model(model_path, repo_id, oauth_token: gr.OAuthToken | None, split_max_tensors=256, split_max_size=None):
|
| 32 |
+
if oauth_token.token is None:
|
| 33 |
+
raise ValueError("You have to be logged in.")
|
| 34 |
+
|
| 35 |
+
split_cmd = f"llama.cpp/gguf-split --split --split-max-tensors {split_max_tensors}"
|
| 36 |
+
if split_max_size:
|
| 37 |
+
split_cmd += f" --split-max-size {split_max_size}"
|
| 38 |
+
split_cmd += f" {model_path} {model_path.split('.')[0]}"
|
| 39 |
+
|
| 40 |
+
print(f"Split command: {split_cmd}")
|
| 41 |
+
|
| 42 |
+
result = subprocess.run(split_cmd, shell=True, capture_output=True, text=True)
|
| 43 |
+
print(f"Split command stdout: {result.stdout}")
|
| 44 |
+
print(f"Split command stderr: {result.stderr}")
|
| 45 |
+
|
| 46 |
+
if result.returncode != 0:
|
| 47 |
+
raise Exception(f"Error splitting the model: {result.stderr}")
|
| 48 |
+
print("Model split successfully!")
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
sharded_model_files = [f for f in os.listdir('.') if f.startswith(model_path.split('.')[0])]
|
| 52 |
+
if sharded_model_files:
|
| 53 |
+
print(f"Sharded model files: {sharded_model_files}")
|
| 54 |
+
api = HfApi(token=oauth_token.token)
|
| 55 |
+
for file in sharded_model_files:
|
| 56 |
+
file_path = os.path.join('.', file)
|
| 57 |
+
print(f"Uploading file: {file_path}")
|
| 58 |
+
try:
|
| 59 |
+
api.upload_file(
|
| 60 |
+
path_or_fileobj=file_path,
|
| 61 |
+
path_in_repo=file,
|
| 62 |
+
repo_id=repo_id,
|
| 63 |
+
)
|
| 64 |
+
except Exception as e:
|
| 65 |
+
raise Exception(f"Error uploading file {file_path}: {e}")
|
| 66 |
+
else:
|
| 67 |
+
raise Exception("No sharded files found.")
|
| 68 |
+
|
| 69 |
+
print("Sharded model has been uploaded successfully!")
|
| 70 |
+
|
| 71 |
+
def process_model(model_id, q_method, private_repo, split_model, split_max_tensors, split_max_size, oauth_token: gr.OAuthToken | None):
|
| 72 |
if oauth_token.token is None:
|
| 73 |
raise ValueError("You must be logged in to use GGUF-my-repo")
|
| 74 |
model_name = model_id.split('/')[-1]
|
| 75 |
+
fp16 = f"{model_name}.fp16.gguf"
|
| 76 |
|
| 77 |
try:
|
| 78 |
api = HfApi(token=oauth_token.token)
|
|
|
|
| 94 |
dl_pattern += pattern
|
| 95 |
|
| 96 |
api.snapshot_download(repo_id=model_id, local_dir=model_name, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
|
| 97 |
+
print("Model downloaded successfully!")
|
| 98 |
+
print(f"Current working directory: {os.getcwd()}")
|
| 99 |
+
print(f"Model directory contents: {os.listdir(model_name)}")
|
| 100 |
|
| 101 |
conversion_script = script_to_use(model_id, api)
|
| 102 |
fp16_conversion = f"python llama.cpp/{conversion_script} {model_name} --outtype f16 --outfile {fp16}"
|
|
|
|
| 104 |
print(result)
|
| 105 |
if result.returncode != 0:
|
| 106 |
raise Exception(f"Error converting to fp16: {result.stderr}")
|
| 107 |
+
print("Model converted to fp16 successfully!")
|
| 108 |
+
print(f"Converted model path: {fp16}")
|
| 109 |
|
| 110 |
+
username = whoami(oauth_token.token)["name"]
|
| 111 |
+
quantized_gguf_name = f"{model_name.lower()}-{q_method.lower()}.gguf"
|
| 112 |
+
quantized_gguf_path = quantized_gguf_name
|
| 113 |
+
quantise_ggml = f"./llama.cpp/quantize {fp16} {quantized_gguf_path} {q_method}"
|
| 114 |
result = subprocess.run(quantise_ggml, shell=True, capture_output=True)
|
| 115 |
if result.returncode != 0:
|
| 116 |
raise Exception(f"Error quantizing: {result.stderr}")
|
| 117 |
+
print(f"Quantized successfully with {q_method} option!")
|
| 118 |
+
print(f"Quantized model path: {quantized_gguf_path}")
|
| 119 |
|
| 120 |
# Create empty repo
|
| 121 |
+
new_repo_url = api.create_repo(repo_id=f"{username}/{model_name}-{q_method}-GGUF", exist_ok=True, private=private_repo)
|
| 122 |
new_repo_id = new_repo_url.repo_id
|
| 123 |
print("Repo created successfully!", new_repo_url)
|
| 124 |
|
|
|
|
| 136 |
This model was converted to GGUF format from [`{model_id}`](https://huggingface.co/{model_id}) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
|
| 137 |
Refer to the [original model card](https://huggingface.co/{model_id}) for more details on the model.
|
| 138 |
## Use with llama.cpp
|
|
|
|
| 139 |
Install llama.cpp through brew.
|
|
|
|
| 140 |
```bash
|
| 141 |
brew install ggerganov/ggerganov/llama.cpp
|
| 142 |
```
|
| 143 |
Invoke the llama.cpp server or the CLI.
|
|
|
|
| 144 |
CLI:
|
|
|
|
| 145 |
```bash
|
| 146 |
+
llama-cli --hf-repo {new_repo_id} --model {quantized_gguf_name} -p "The meaning to life and the universe is"
|
| 147 |
```
|
|
|
|
| 148 |
Server:
|
|
|
|
| 149 |
```bash
|
| 150 |
+
llama-server --hf-repo {new_repo_id} --model {quantized_gguf_name} -c 2048
|
| 151 |
```
|
|
|
|
| 152 |
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
|
|
|
|
| 153 |
```
|
| 154 |
+
git clone https://github.com/ggerganov/llama.cpp && \\
|
| 155 |
+
cd llama.cpp && \\
|
| 156 |
+
make && \\
|
| 157 |
+
./main -m {quantized_gguf_name} -n 128
|
| 158 |
```
|
| 159 |
"""
|
| 160 |
)
|
| 161 |
+
card.save(f"README.md")
|
| 162 |
+
|
| 163 |
+
if split_model:
|
| 164 |
+
split_upload_model(quantized_gguf_path, new_repo_id, oauth_token, split_max_tensors, split_max_size)
|
| 165 |
+
else:
|
| 166 |
+
try:
|
| 167 |
+
print(f"Uploading quantized model: {quantized_gguf_path}")
|
| 168 |
+
api.upload_file(
|
| 169 |
+
path_or_fileobj=quantized_gguf_path,
|
| 170 |
+
path_in_repo=quantized_gguf_name,
|
| 171 |
+
repo_id=new_repo_id,
|
| 172 |
+
)
|
| 173 |
+
except Exception as e:
|
| 174 |
+
raise Exception(f"Error uploading quantized model: {e}")
|
| 175 |
|
| 176 |
api.upload_file(
|
| 177 |
+
path_or_fileobj=f"README.md",
|
| 178 |
+
path_in_repo=f"README.md",
|
| 179 |
repo_id=new_repo_id,
|
| 180 |
)
|
| 181 |
+
print(f"Uploaded successfully with {q_method} option!")
|
| 182 |
|
| 183 |
return (
|
| 184 |
f'Find your repo <a href=\'{new_repo_url}\' target="_blank" style="text-decoration:underline">here</a>',
|
|
|
|
| 192 |
|
| 193 |
|
| 194 |
# Create Gradio interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
with gr.Blocks() as demo:
|
| 196 |
gr.Markdown("You must be logged in to use GGUF-my-repo.")
|
| 197 |
gr.LoginButton(min_width=250)
|
| 198 |
+
|
| 199 |
+
model_id_input = HuggingfaceHubSearch(
|
| 200 |
+
label="Hub Model ID",
|
| 201 |
+
placeholder="Search for model id on Huggingface",
|
| 202 |
+
search_type="model",
|
| 203 |
+
)
|
| 204 |
+
|
| 205 |
+
q_method_input = gr.Dropdown(
|
| 206 |
+
["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"],
|
| 207 |
+
label="Quantization Method",
|
| 208 |
+
info="GGML quantization type",
|
| 209 |
+
value="Q4_K_M",
|
| 210 |
+
filterable=False
|
| 211 |
+
)
|
| 212 |
+
|
| 213 |
+
private_repo_input = gr.Checkbox(
|
| 214 |
+
value=False,
|
| 215 |
+
label="Private Repo",
|
| 216 |
+
info="Create a private repo under your username."
|
| 217 |
+
)
|
| 218 |
+
|
| 219 |
+
split_model_input = gr.Checkbox(
|
| 220 |
+
value=False,
|
| 221 |
+
label="Split Model",
|
| 222 |
+
info="Shard the model using gguf-split."
|
| 223 |
+
)
|
| 224 |
+
|
| 225 |
+
split_max_tensors_input = gr.Number(
|
| 226 |
+
value=256,
|
| 227 |
+
label="Max Tensors per File",
|
| 228 |
+
info="Maximum number of tensors per file when splitting model.",
|
| 229 |
+
visible=False
|
| 230 |
+
)
|
| 231 |
+
|
| 232 |
+
split_max_size_input = gr.Textbox(
|
| 233 |
+
label="Max File Size",
|
| 234 |
+
info="Maximum file size when splitting model (--split-max-size). May leave empty to use the default.",
|
| 235 |
+
visible=False
|
| 236 |
+
)
|
| 237 |
+
|
| 238 |
+
iface = gr.Interface(
|
| 239 |
+
fn=process_model,
|
| 240 |
+
inputs=[
|
| 241 |
+
model_id_input,
|
| 242 |
+
q_method_input,
|
| 243 |
+
private_repo_input,
|
| 244 |
+
split_model_input,
|
| 245 |
+
split_max_tensors_input,
|
| 246 |
+
split_max_size_input,
|
| 247 |
+
],
|
| 248 |
+
outputs=[
|
| 249 |
+
gr.Markdown(label="output"),
|
| 250 |
+
gr.Image(show_label=False),
|
| 251 |
+
],
|
| 252 |
+
title="Create your own GGUF Quants, blazingly fast β‘!",
|
| 253 |
+
description="The space takes an HF repo as an input, quantizes it and creates a Public repo containing the selected quant under your HF user namespace.",
|
| 254 |
+
)
|
| 255 |
+
|
| 256 |
+
def update_visibility(split_model):
|
| 257 |
+
return gr.update(visible=split_model), gr.update(visible=split_model)
|
| 258 |
+
|
| 259 |
+
split_model_input.change(
|
| 260 |
+
fn=update_visibility,
|
| 261 |
+
inputs=split_model_input,
|
| 262 |
+
outputs=[split_max_tensors_input, split_max_size_input]
|
| 263 |
+
)
|
| 264 |
|
| 265 |
def restart_space():
|
| 266 |
HfApi().restart_space(repo_id="ggml-org/gguf-my-repo", token=HF_TOKEN, factory_reboot=True)
|