File size: 9,669 Bytes
318d977 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Intelligent Tokenizer v6.0 - Inference Module
임베딩과 복원 기능
"""
import torch
import sys
import io
from pathlib import Path
from typing import Dict, List, Optional, Tuple
# UTF-8 인코딩 설정
if sys.stdout.encoding != 'utf-8':
sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-8')
sys.stderr = io.TextIOWrapper(sys.stderr.buffer, encoding='utf-8')
sys.path.append(str(Path(__file__).parent))
from core.boundary_aware_model import BoundaryAwareTokenizerModel
from src.core.byte_tokenizer_v6 import ByteTokenizerV6
class IntelligentTokenizer:
"""Intelligent Tokenizer for embedding and restoration"""
def __init__(self, checkpoint_path: str = "checkpoints/latest_checkpoint.pt", device: str = None):
"""
Initialize tokenizer
Args:
checkpoint_path: Path to model checkpoint
device: Device to use ('cuda', 'cpu', or None for auto)
"""
if device is None:
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
else:
self.device = torch.device(device)
print(f"Initializing Intelligent Tokenizer v6.0...")
print(f"Device: {self.device}")
# Load checkpoint
checkpoint_path = Path(checkpoint_path)
if not checkpoint_path.exists():
raise FileNotFoundError(f"Checkpoint not found: {checkpoint_path}")
checkpoint = torch.load(checkpoint_path, map_location=self.device, weights_only=False)
# Initialize model
self.model = BoundaryAwareTokenizerModel(**checkpoint['model_config'])
self.model.load_state_dict(checkpoint['model_state_dict'])
self.model = self.model.to(self.device)
self.model.eval()
# Initialize tokenizer
self.tokenizer = ByteTokenizerV6()
self.max_chunk_size = 250 # Safe margin for 256 byte limit
print(f"Model loaded: Epoch {checkpoint['epoch']}, Loss {checkpoint['loss']:.4f}")
print(f"Ready for inference!")
def embed(self, text: str) -> torch.Tensor:
"""
Convert text to embeddings
Args:
text: Input text
Returns:
Embedding tensor
"""
# Handle long text by chunking
if len(text.encode('utf-8')) > self.max_chunk_size:
chunks = self._split_text_safely(text)
embeddings = []
for chunk in chunks:
emb = self._embed_single(chunk)
embeddings.append(emb)
# Concatenate embeddings
return torch.cat(embeddings, dim=1)
else:
return self._embed_single(text)
def _embed_single(self, text: str) -> torch.Tensor:
"""Embed single chunk"""
# Encode text
encoded = self.tokenizer.encode(text)
byte_ids = encoded['input_ids']
input_ids = torch.tensor([byte_ids], device=self.device)
attention_mask = torch.tensor([encoded['attention_mask']], device=self.device)
with torch.no_grad():
# Get embeddings
encoder_outputs = self.model.encoder(input_ids, attention_mask)
embeddings = encoder_outputs['last_hidden_state']
return embeddings
def restore(self, text: str) -> Tuple[str, float]:
"""
Test restoration capability
Args:
text: Input text
Returns:
Tuple of (restored_text, accuracy)
"""
# Handle long text
if len(text.encode('utf-8')) > self.max_chunk_size:
chunks = self._split_text_safely(text)
restored_chunks = []
accuracies = []
for chunk in chunks:
restored, acc = self._restore_single(chunk)
restored_chunks.append(restored)
accuracies.append(acc)
return ''.join(restored_chunks), sum(accuracies) / len(accuracies)
else:
return self._restore_single(text)
def _restore_single(self, text: str) -> Tuple[str, float]:
"""Restore single chunk"""
# Encode text
encoded = self.tokenizer.encode(text)
byte_ids = encoded['input_ids']
if len(byte_ids) <= 1:
return text, 1.0
input_ids = torch.tensor([byte_ids], device=self.device)
attention_mask = torch.tensor([encoded['attention_mask']], device=self.device)
with torch.no_grad():
# Teacher forcing for restoration test
decoder_input = input_ids[:, :-1]
labels = input_ids[:, 1:]
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input,
labels=labels,
use_cross_attention=True
)
# Get predictions
predictions = torch.argmax(outputs['logits'], dim=-1)
accuracy = (predictions == labels).float().mean().item()
# Decode predictions
try:
# Remove special tokens and convert to bytes
pred_list = predictions[0].cpu().tolist()
# Add BOS at beginning for full sequence
full_sequence = [self.tokenizer.BOS] + pred_list
# Filter valid bytes
filtered = [b for b in full_sequence if 0 <= b < 256]
if filtered:
restored_bytes = bytes(filtered)
restored_text = restored_bytes.decode('utf-8', errors='ignore')
else:
restored_text = ""
except Exception as e:
print(f"Restoration error: {e}")
restored_text = ""
return restored_text, accuracy
def compress(self, text: str) -> Dict:
"""
Get compression statistics
Args:
text: Input text
Returns:
Dict with compression info
"""
text_bytes = text.encode('utf-8')
embeddings = self.embed(text)
original_size = len(text_bytes)
compressed_size = embeddings.shape[1]
compression_ratio = original_size / compressed_size if compressed_size > 0 else 0
return {
'original_bytes': original_size,
'compressed_tokens': compressed_size,
'compression_ratio': compression_ratio,
'embedding_shape': list(embeddings.shape)
}
def _split_text_safely(self, text: str) -> List[str]:
"""Split text safely at UTF-8 boundaries"""
chunks = []
text_bytes = text.encode('utf-8')
start = 0
while start < len(text_bytes):
end = min(start + self.max_chunk_size, len(text_bytes))
# Find valid UTF-8 boundary
while end > start and end < len(text_bytes):
try:
chunk = text_bytes[start:end].decode('utf-8')
break
except UnicodeDecodeError:
end -= 1
if end > start:
chunk = text_bytes[start:end].decode('utf-8')
chunks.append(chunk)
start = end
else:
break
return chunks
def test_model():
"""Test model functionality"""
print("="*70)
print("INTELLIGENT TOKENIZER v6.0 - FUNCTIONALITY TEST")
print("="*70)
# Initialize tokenizer
tokenizer = IntelligentTokenizer()
# Test samples
test_samples = [
("English", "Hello, world!"),
("Korean", "안녕하세요. 반갑습니다."),
("Chinese", "今天天气很好"),
("Japanese", "こんにちは"),
("Arabic", "مرحبا بك"),
("Russian", "Привет, как дела?"),
("Emoji", "Hello 👋 World 🌍!"),
]
print("\n" + "="*70)
print("EMBEDDING & RESTORATION TESTS")
print("="*70)
total_accuracy = 0
successful = 0
for lang, text in test_samples:
print(f"\n[{lang}]")
print(f"Original: {text}")
# Test embedding
embeddings = tokenizer.embed(text)
print(f"Embedding: {embeddings.shape}")
# Test compression
compression = tokenizer.compress(text)
print(f"Compression: {compression['original_bytes']} bytes → {compression['compressed_tokens']} tokens")
print(f"Ratio: {compression['compression_ratio']:.2f}x")
# Test restoration
restored, accuracy = tokenizer.restore(text)
print(f"Restored: {restored}")
print(f"Accuracy: {accuracy:.1%}")
if accuracy > 0.7:
successful += 1
total_accuracy += accuracy
# Summary
print("\n" + "="*70)
print("TEST SUMMARY")
print("="*70)
print(f"Tests passed: {successful}/{len(test_samples)}")
print(f"Average accuracy: {total_accuracy/len(test_samples):.1%}")
if successful == len(test_samples):
print("\n✅ ALL TESTS PASSED!")
return True
elif successful >= len(test_samples) * 0.7:
print("\n⚠️ PARTIAL SUCCESS (70%+ tests passed)")
return True
else:
print("\n❌ TESTS FAILED")
return False
if __name__ == "__main__":
success = test_model()
sys.exit(0 if success else 1) |