File size: 21,282 Bytes
a6c6452 ff85374 a6c6452 ff85374 a6c6452 ff85374 a6c6452 ff85374 a6c6452 ff85374 a6c6452 ff85374 a6c6452 ff85374 a6c6452 ff85374 a6c6452 ff85374 a6c6452 ff85374 a6c6452 ff85374 a6c6452 ff85374 c2e3f6e ff85374 c2e3f6e ff85374 c2e3f6e ff85374 c2e3f6e ff85374 c2e3f6e ff85374 c2e3f6e ff85374 c2e3f6e ff85374 c2e3f6e ff85374 c2e3f6e ff85374 a6c6452 ff85374 da2970e ff85374 c2e3f6e ff85374 c2e3f6e ff85374 c2e3f6e ff85374 a6c6452 ff85374 a6c6452 ff85374 a6c6452 ff85374 a6c6452 ff85374 c2e3f6e ff85374 c2e3f6e ff85374 c2e3f6e ff85374 a6c6452 ff85374 a6c6452 ff85374 c2e3f6e ff85374 a6c6452 ff85374 c2e3f6e ff85374 c2e3f6e ff85374 c2e3f6e ff85374 c2e3f6e ff85374 c2e3f6e ff85374 c2e3f6e ff85374 c2e3f6e ff85374 c2e3f6e ff85374 c2e3f6e ff85374 c2e3f6e ff85374 c2e3f6e ff85374 c2e3f6e ff85374 c2e3f6e ff85374 a6c6452 ff85374 a6c6452 ff85374 c2e3f6e ff85374 c2e3f6e ff85374 c2e3f6e ff85374 a6c6452 ff85374 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 |
"""
Intelligent Tokenizer v6.2.0 - Unified Model
Integrates encoder, decoder, and tokenizer with all GPT improvements
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Dict, List, Optional, Tuple, Union
import math
# Import our components
try:
from .encoder import EncoderV62
from .decoder import DecoderV62
from .tokenizer import ByteTokenizerV62
except ImportError:
# For standalone testing
from encoder import EncoderV62
from decoder import DecoderV62
from tokenizer import ByteTokenizerV62
class IntelligentTokenizerV62(nn.Module):
"""
Complete v6.2.0 model with progressive splitting and optimizations
Key features:
- 48-byte chunks (46+2 with BOS/EOS)
- Progressive splitting: 48β1βNβM tokens
- Multi-level cross-attention
- KV cache optimization (8x reduction)
- All GPT-5 improvements integrated
"""
def __init__(self, config: Optional[Dict] = None):
super().__init__()
# Default configuration
self.config = config or {}
# Model components
self.tokenizer = ByteTokenizerV62(config)
self.encoder = EncoderV62(config)
self.decoder = DecoderV62(config)
# Training configuration
self.compression_weight = 0.1
self.reconstruction_weight = 0.1
self.boundary_weight = 0.1
# Monitoring
self.register_buffer('training_step', torch.tensor(0))
self.register_buffer('current_epoch', torch.tensor(0))
def forward(self,
input_ids: torch.Tensor = None,
attention_mask: torch.Tensor = None,
labels: torch.Tensor = None,
text: str = None,
return_loss: bool = True,
temperature: float = 1.0) -> Dict[str, torch.Tensor]:
"""
Unified forward pass
Args:
input_ids: Pre-tokenized input (optional)
attention_mask: Attention mask (optional)
labels: Target labels for training (optional)
text: Raw text input (alternative to input_ids)
return_loss: Whether to compute loss
temperature: Temperature for Gumbel-Softmax in encoder
Returns:
Dictionary with model outputs
"""
# Handle text input
if text is not None:
encoded = self.tokenizer.encode(text, add_special_tokens=True)
input_ids = encoded['input_ids'].unsqueeze(0) if encoded['input_ids'].dim() == 1 else encoded['input_ids']
attention_mask = encoded['attention_mask'].unsqueeze(0) if encoded['attention_mask'].dim() == 1 else encoded['attention_mask']
# Handle string passed as input_ids (common mistake)
if isinstance(input_ids, str):
text = input_ids
encoded = self.tokenizer.encode(text, add_special_tokens=True)
input_ids = encoded['input_ids'].unsqueeze(0) if encoded['input_ids'].dim() == 1 else encoded['input_ids']
attention_mask = encoded['attention_mask'].unsqueeze(0) if encoded['attention_mask'].dim() == 1 else encoded['attention_mask']
# Ensure tensors are on the right device
device = next(self.parameters()).device
if input_ids is not None and torch.is_tensor(input_ids):
input_ids = input_ids.to(device)
if attention_mask is not None and torch.is_tensor(attention_mask):
attention_mask = attention_mask.to(device)
if labels is not None and torch.is_tensor(labels):
labels = labels.to(device)
# Encoder forward pass with temperature for Gumbel annealing
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
temperature=temperature
)
# Decoder forward pass
if labels is not None:
# Training mode with teacher forcing (GPT suggestion: shift by 1)
# Input: labels[:-1], Target: labels[1:]
decoder_input = labels[:, :-1] if labels.dim() > 1 else labels[:-1]
decoder_mask = attention_mask[:, :-1] if attention_mask is not None and attention_mask.dim() > 1 else None
decoder_outputs = self.decoder(
encoder_all_hidden=encoder_outputs['all_hidden_states'],
decoder_input_ids=decoder_input,
attention_mask=decoder_mask
)
else:
# Inference mode (without teacher forcing)
# For now, fallback to using input as labels for stable training
# TODO: Implement proper autoregressive generation
if return_loss and input_ids is not None:
labels = input_ids # Use input as both input and target
decoder_input = labels[:, :-1] if labels.dim() > 1 else labels[:-1]
decoder_mask = attention_mask[:, :-1] if attention_mask is not None and attention_mask.dim() > 1 else None
decoder_outputs = self.decoder(
encoder_all_hidden=encoder_outputs['all_hidden_states'],
decoder_input_ids=decoder_input,
attention_mask=decoder_mask
)
else:
decoder_outputs = self.decoder(
encoder_all_hidden=encoder_outputs['all_hidden_states'],
decoder_input_ids=None,
attention_mask=attention_mask
)
# Combine outputs with prefix to avoid key collision (GPT suggestion)
outputs = {}
for key, value in encoder_outputs.items():
outputs[f'enc_{key}'] = value
for key, value in decoder_outputs.items():
outputs[f'dec_{key}'] = value
# Compute loss if requested
if return_loss and labels is not None:
loss = self.compute_loss(outputs, labels, attention_mask)
outputs['loss'] = loss
return outputs
def compute_loss(self,
outputs: Dict[str, torch.Tensor],
labels: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
"""
Compute combined loss with multiple objectives
Components:
1. Reconstruction loss (cross-entropy)
2. Compression loss (encourage higher compression)
3. Boundary loss (boundary prediction accuracy)
"""
losses = {}
# 1. Reconstruction loss (GPT suggestion: use shifted targets)
if 'dec_logits' in outputs:
logits = outputs['dec_logits']
# Shift targets for next-token prediction
target_labels = labels[:, 1:] if labels.dim() > 1 else labels[1:]
target_mask = attention_mask[:, 1:] if attention_mask is not None and attention_mask.dim() > 1 else None
# Reshape for cross-entropy
batch_size, seq_len, vocab_size = logits.shape
logits_flat = logits.reshape(-1, vocab_size)
labels_flat = target_labels.reshape(-1)
# Mask out padding (GPT suggestion: use bool mask)
if target_mask is not None:
mask_flat = target_mask.reshape(-1).bool()
reconstruction_loss = F.cross_entropy(
logits_flat[mask_flat],
labels_flat[mask_flat],
ignore_index=self.tokenizer.PAD,
label_smoothing=0.1 # Added label smoothing
)
else:
reconstruction_loss = F.cross_entropy(
logits_flat,
labels_flat,
ignore_index=self.tokenizer.PAD,
label_smoothing=0.1
)
losses['reconstruction'] = reconstruction_loss * self.reconstruction_weight
# 2. Compression loss (GPT suggestion: use proper device tensor creation)
if 'enc_compression_ratio' in outputs:
# Target compression ratio (e.g., 24:1 as per config)
target_ratio = 24.0
current_ratio = outputs['enc_compression_ratio']
# Create tensors on same device (GPT suggestion)
if isinstance(current_ratio, (int, float)):
current_ratio_tensor = labels.new_tensor(current_ratio, dtype=torch.float32)
else:
current_ratio_tensor = current_ratio.float()
target_ratio_tensor = labels.new_tensor(target_ratio, dtype=torch.float32)
# Penalize deviation from target (use smooth L1 to avoid explosion)
compression_loss = F.smooth_l1_loss(
current_ratio_tensor,
target_ratio_tensor,
beta=2.0 # Transition point from L2 to L1
)
losses['compression'] = compression_loss * self.compression_weight
# 3. Boundary loss (GPT suggestion: more meaningful boundary learning)
if 'enc_boundaries' in outputs and outputs['enc_boundaries'] is not None:
boundary_scores = outputs['enc_boundaries']
# Boundary sparsity + smoothness (GPT suggestion)
# Encourage sparse but clear boundaries
boundary_probs = torch.sigmoid(boundary_scores)
# Sparsity loss (boundaries should be rare)
sparsity_loss = boundary_probs.mean() * 0.1
# Smoothness loss (adjacent boundaries should be different)
if boundary_scores.size(1) > 1:
diff = boundary_scores[:, 1:] - boundary_scores[:, :-1]
smoothness_loss = (diff ** 2).mean() * 0.01
else:
smoothness_loss = 0.0
boundary_loss = sparsity_loss + smoothness_loss
losses['boundary'] = boundary_loss * self.boundary_weight
# Combine all losses
total_loss = sum(losses.values())
# Store individual losses for monitoring
self.last_losses = losses
return total_loss
def generate(self,
text: str = None,
input_ids: torch.Tensor = None,
max_length: int = 256,
temperature: float = 0.1,
top_k: int = 10,
top_p: float = 0.95) -> str:
"""
Generate/reconstruct text
Args:
text: Input text to encode and reconstruct
input_ids: Pre-encoded input
max_length: Maximum generation length
temperature: Sampling temperature
top_k: Top-k sampling
top_p: Top-p (nucleus) sampling
Returns:
Reconstructed/generated text
"""
# Encode input if text is provided (GPT suggestion: handle multi-chunk properly)
chunk_positions = None
if text is not None:
# Check if text needs chunking
if len(text.encode('utf-8')) > self.tokenizer.content_size:
encoded = self.tokenizer.encode(text, add_special_tokens=True, return_chunks=True)
chunk_positions = encoded.get('chunk_positions', None)
else:
encoded = self.tokenizer.encode(text, add_special_tokens=True)
input_ids = encoded['input_ids'].unsqueeze(0) if encoded['input_ids'].dim() == 1 else encoded['input_ids']
attention_mask = encoded['attention_mask'].unsqueeze(0) if encoded['attention_mask'].dim() == 1 else encoded['attention_mask']
else:
attention_mask = (input_ids != self.tokenizer.PAD).bool() # GPT suggestion: bool mask
# Move to device
device = next(self.parameters()).device
input_ids = input_ids.to(device)
attention_mask = attention_mask.to(device)
# Encode
with torch.no_grad():
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask
)
# Prepare all hidden states for decoder
if 'all_hidden_states' in encoder_outputs:
encoder_all_hidden = encoder_outputs['all_hidden_states']
else:
compressed = encoder_outputs.get('compressed', encoder_outputs.get('hidden_states'))
encoder_all_hidden = [compressed] * 4
# Autoregressive generation (fixed version)
batch_size = input_ids.size(0)
# Start with BOS token
generated_ids = torch.full((batch_size, 1), self.tokenizer.BOS, device=device)
for step in range(max_length - 1):
with torch.no_grad():
# Decode current sequence
decoder_outputs = self.decoder(
encoder_all_hidden=encoder_all_hidden,
decoder_input_ids=generated_ids,
attention_mask=torch.ones_like(generated_ids),
use_cache=False
)
# Get next token prediction
logits = decoder_outputs['logits'][:, -1, :] / temperature
# Top-k filtering
if top_k > 0:
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
logits[indices_to_remove] = float('-inf')
# Sample next token
probs = F.softmax(logits, dim=-1)
next_token = torch.multinomial(probs, num_samples=1)
# Append to generated sequence
generated_ids = torch.cat([generated_ids, next_token], dim=1)
# Check for EOS
if (next_token == self.tokenizer.EOS).all():
break
# Decode to text (GPT suggestion: proper multi-chunk reconstruction)
if generated_ids.dim() > 2 and chunk_positions is not None:
# Multi-chunk output with positions
text = self.tokenizer.reconstruct(
generated_ids,
positions=chunk_positions,
overlap=self.tokenizer.chunk_overlap
)
elif generated_ids.dim() > 2:
# Multi-chunk without positions (fallback)
text = self.tokenizer.reconstruct(generated_ids)
else:
# Single sequence
text = self.tokenizer.decode(generated_ids[0] if generated_ids.dim() > 1 else generated_ids)
return text
def compress(self, text: str) -> Dict[str, Union[torch.Tensor, float]]:
"""
Compress text and return compression statistics
Args:
text: Input text to compress
Returns:
Dictionary with compressed representation and statistics
"""
# Encode text
encoded = self.tokenizer.encode(text, add_special_tokens=True)
input_ids = encoded['input_ids'].unsqueeze(0) if encoded['input_ids'].dim() == 1 else encoded['input_ids']
attention_mask = encoded['attention_mask'].unsqueeze(0) if encoded['attention_mask'].dim() == 1 else encoded['attention_mask']
# Move to device
device = next(self.parameters()).device
input_ids = input_ids.to(device)
attention_mask = attention_mask.to(device)
# Get compressed representation
with torch.no_grad():
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask
)
return {
'compressed': encoder_outputs['compressed'],
'num_tokens': encoder_outputs['num_tokens'],
'compression_ratio': encoder_outputs['compression_ratio'],
'original_bytes': len(text.encode('utf-8')),
'compressed_size': encoder_outputs['num_tokens'] * 2 # Approximate bytes
}
def update_training_state(self, epoch: int, step: int = 0, reconstruction_loss: float = None):
"""
Update training state - adaptive, not phase-based
Args:
epoch: Current epoch
step: Current training step
reconstruction_loss: Current reconstruction quality
"""
self.current_epoch = torch.tensor(epoch)
self.training_step = torch.tensor(step)
# Update encoder warmup (gates only)
self.encoder.set_warmup_step(step)
# Adaptive weight adjustment based on performance
if reconstruction_loss is not None:
# If reconstruction is poor, increase its weight
if reconstruction_loss > 1.0:
self.reconstruction_weight = 1.0
self.compression_weight = 0.1 # Less compression focus
else:
# Good reconstruction, can focus on compression
self.reconstruction_weight = 0.5
self.compression_weight = 0.1
# Boundary weight stays moderate
self.boundary_weight = 0.1
# Let encoder know about reconstruction quality
self.encoder.adaptive_compression_control(reconstruction_loss)
else:
# Default balanced weights
self.reconstruction_weight = 0.5
self.compression_weight = 0.1
self.boundary_weight = 0.1
def get_model_stats(self) -> Dict[str, float]:
"""
Get model statistics for monitoring
Returns:
Dictionary with various model statistics
"""
stats = {}
# Encoder stats (GPT suggestion: already prefixed)
encoder_stats = self.encoder.get_monitoring_stats()
stats.update({f'encoder_{k}': v for k, v in encoder_stats.items()})
# Decoder memory stats
decoder_memory = self.decoder.get_memory_usage()
stats.update({f'decoder_{k}': v for k, v in decoder_memory.items()})
# Loss stats (if available) - check for tensor items
if hasattr(self, 'last_losses'):
for k, v in self.last_losses.items():
if isinstance(v, torch.Tensor):
stats[f'loss_{k}'] = v.item() if v.numel() == 1 else v.mean().item()
else:
stats[f'loss_{k}'] = float(v)
# Training info
stats['current_epoch'] = self.current_epoch.item()
stats['training_step'] = self.training_step.item()
return stats
def save_checkpoint(self, path: str):
"""
Save model checkpoint
Args:
path: Path to save checkpoint
"""
checkpoint = {
'model_state_dict': self.state_dict(),
'config': self.config,
'epoch': self.current_epoch.item(),
'step': self.training_step.item(),
'stats': self.get_model_stats()
}
torch.save(checkpoint, path)
print(f"Checkpoint saved to {path}")
@classmethod
def from_checkpoint(cls, path: str, device: str = 'cuda'):
"""
Load model from checkpoint
Args:
path: Path to checkpoint
device: Device to load model on
Returns:
Loaded model instance
"""
checkpoint = torch.load(path, map_location=device)
# Create model with saved config
model = cls(checkpoint.get('config', {}))
model.load_state_dict(checkpoint['model_state_dict'])
model.to(device)
# Restore training state
if 'epoch' in checkpoint:
model.current_epoch = torch.tensor(checkpoint['epoch'])
if 'step' in checkpoint:
model.training_step = torch.tensor(checkpoint['step'])
print(f"Model loaded from {path} (Epoch {checkpoint.get('epoch', 0)})")
return model
if __name__ == "__main__":
# Test unified model
print("Testing Intelligent Tokenizer v6.2.0")
# Create model
model = IntelligentTokenizerV62()
print(f"Model created with {sum(p.numel() for p in model.parameters())/1e6:.1f}M parameters")
# Test texts
test_texts = [
"Hello, world!",
"μλ
νμΈμ, λ§λμ λ°κ°μ΅λλ€. μ€λ λ μ¨κ° μ’λ€μ!",
"δ»ε€©ε€©ζ°εΎε₯½γ",
]
for text in test_texts:
print(f"\nInput: {text}")
# Compress
compression = model.compress(text)
print(f" Compression ratio: {compression['compression_ratio']:.1f}:1")
print(f" Tokens: {compression['num_tokens']}")
# Generate (reconstruct)
reconstructed = model.generate(text, temperature=0.1)
print(f" Reconstructed: {reconstructed}")
# Get model stats
stats = model.get_model_stats()
print(f"\nModel Statistics:")
for key, value in stats.items():
if isinstance(value, float):
print(f" {key}: {value:.4f}")
else:
print(f" {key}: {value}") |