ggunio's picture
Upload app.py with huggingface_hub
424a951 verified
raw
history blame
13.9 kB
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Intelligent Tokenizer v6.0 - Working Demo for Hugging Face Spaces
์‹ค์ œ ์ž‘๋™ํ•˜๋Š” ๋ฐ๋ชจ - ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์—†์Œ
"""
import gradio as gr
import torch
import sys
import io
from pathlib import Path
import json
import time
# UTF-8 ์„ค์ •
if sys.stdout.encoding != 'utf-8':
sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-8')
sys.stderr = io.TextIOWrapper(sys.stderr.buffer, encoding='utf-8')
# Add path
sys.path.append(str(Path(__file__).parent))
# Import actual modules
from core.boundary_aware_model import BoundaryAwareTokenizerModel
from src.core.byte_tokenizer_v6 import ByteTokenizerV6
# Device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class IntelligentTokenizerDemo:
def __init__(self):
"""Initialize the actual model"""
self.device = device
self.tokenizer = ByteTokenizerV6()
self.model = None
self.load_model()
def load_model(self):
"""Load the actual trained model"""
try:
# Try loading from pytorch_model.bin first (extracted weights)
model_path = Path("pytorch_model.bin")
if not model_path.exists():
# Fallback to checkpoint
model_path = Path("checkpoints/latest_checkpoint.pt")
if model_path.exists():
print(f"Loading model from {model_path}...")
checkpoint = torch.load(model_path, map_location=self.device, weights_only=False)
# Get model config
if 'model_config' in checkpoint:
model_config = checkpoint['model_config']
else:
# Load from config.json
with open("config.json", "r") as f:
config = json.load(f)
model_config = {
'vocab_size': config['vocab_size'],
'hidden_dim': config.get('decoder_hidden', 768),
'num_heads': config['num_heads'],
'num_encoder_layers': 5,
'num_decoder_layers': config['num_decoder_layers'],
'dropout': config['dropout']
}
# Initialize model
self.model = BoundaryAwareTokenizerModel(**model_config)
# Load weights
if 'model_state_dict' in checkpoint:
self.model.load_state_dict(checkpoint['model_state_dict'])
else:
self.model.load_state_dict(checkpoint)
self.model = self.model.to(self.device)
self.model.eval()
print("Model loaded successfully!")
else:
print("Warning: No model checkpoint found, using untrained model")
# Initialize untrained model for testing
model_config = {
'vocab_size': 260,
'hidden_dim': 768,
'num_heads': 8,
'num_encoder_layers': 5,
'num_decoder_layers': 6,
'dropout': 0.1
}
self.model = BoundaryAwareTokenizerModel(**model_config)
self.model = self.model.to(self.device)
self.model.eval()
except Exception as e:
print(f"Error loading model: {e}")
raise
def embed_text(self, text):
"""์‹ค์ œ ์ž„๋ฒ ๋”ฉ ์ƒ์„ฑ"""
if not text:
return None, "Please enter text"
try:
# Encode text
encoded = self.tokenizer.encode(text)
byte_ids = encoded['input_ids']
# Truncate if too long
if len(byte_ids) > 256:
byte_ids = byte_ids[:256]
byte_ids[-1] = self.tokenizer.EOS
# Prepare tensors
input_ids = torch.tensor([byte_ids], device=self.device)
attention_mask = torch.tensor([encoded['attention_mask'][:len(byte_ids)]], device=self.device)
# Generate embeddings
with torch.no_grad():
encoder_outputs = self.model.encoder(input_ids, attention_mask)
embeddings = encoder_outputs['last_hidden_state']
# Statistics
original_bytes = len(text.encode('utf-8'))
compressed_tokens = embeddings.shape[1]
compression_ratio = original_bytes / compressed_tokens if compressed_tokens > 0 else 0
result = f"""โœ… **Embedding Generated Successfully**
**Input Text:** {text[:100]}{'...' if len(text) > 100 else ''}
**Original Size:** {original_bytes} bytes
**Compressed Size:** {compressed_tokens} tokens
**Compression Ratio:** {compression_ratio:.2f}x
**Embedding Shape:** {list(embeddings.shape)}
**Device:** {self.device}
**First 10 values:** {embeddings[0, 0, :10].cpu().numpy().tolist()}
"""
return embeddings, result
except Exception as e:
return None, f"Error: {str(e)}"
def restore_text(self, text):
"""์‹ค์ œ ๋ณต์› ํ…Œ์ŠคํŠธ"""
if not text:
return "Please enter text"
try:
# Encode text
encoded = self.tokenizer.encode(text)
byte_ids = encoded['input_ids']
# Truncate if needed
if len(byte_ids) > 256:
byte_ids = byte_ids[:256]
byte_ids[-1] = self.tokenizer.EOS
truncated = True
else:
truncated = False
if len(byte_ids) <= 1:
return "Text too short for restoration test"
# Prepare tensors
input_ids = torch.tensor([byte_ids], device=self.device)
attention_mask = torch.tensor([encoded['attention_mask'][:len(byte_ids)]], device=self.device)
# Teacher forcing restoration
with torch.no_grad():
decoder_input = input_ids[:, :-1]
labels = input_ids[:, 1:]
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input,
labels=labels,
use_cross_attention=True
)
# Get predictions
predictions = torch.argmax(outputs['logits'], dim=-1)
accuracy = (predictions == labels).float().mean().item()
# Decode predictions
pred_list = predictions[0].cpu().tolist()
full_sequence = [self.tokenizer.BOS] + pred_list
# Convert to text
filtered = [b for b in full_sequence if 0 <= b < 256]
if filtered:
restored_bytes = bytes(filtered)
restored_text = restored_bytes.decode('utf-8', errors='ignore')
else:
restored_text = "[Unable to restore]"
result = f"""โœ… **Restoration Test Complete**
**Original Text:** {text[:100]}{'...' if len(text) > 100 else ''}
**Restored Text:** {restored_text[:100]}{'...' if len(restored_text) > 100 else ''}
**Accuracy:** {accuracy:.1%}
**Bytes Processed:** {len(byte_ids)}
{'**Note:** Text was truncated to 256 bytes' if truncated else ''}
**Status:** {'Perfect Match! โœจ' if accuracy > 0.95 else 'Good Match' if accuracy > 0.8 else 'Partial Match'}
"""
return result
except Exception as e:
return f"Error: {str(e)}"
def compress_stats(self, text):
"""์••์ถ• ํ†ต๊ณ„ ๋ถ„์„"""
if not text:
return "Please enter text"
try:
lines = text.strip().split('\n')
results = []
for line in lines[:10]: # Limit to 10 lines
if not line.strip():
continue
# Get compression stats
encoded = self.tokenizer.encode(line)
byte_ids = encoded['input_ids']
if len(byte_ids) > 256:
byte_ids = byte_ids[:256]
input_ids = torch.tensor([byte_ids], device=self.device)
attention_mask = torch.tensor([encoded['attention_mask'][:len(byte_ids)]], device=self.device)
with torch.no_grad():
encoder_outputs = self.model.encoder(input_ids, attention_mask)
compressed_size = encoder_outputs['last_hidden_state'].shape[1]
original_size = len(line.encode('utf-8'))
ratio = original_size / compressed_size if compressed_size > 0 else 0
results.append({
'text': line[:50] + '...' if len(line) > 50 else line,
'original': original_size,
'compressed': compressed_size,
'ratio': ratio
})
# Format results
output = "**Compression Analysis Results**\n\n"
output += "| Text | Original | Compressed | Ratio |\n"
output += "|------|----------|------------|-------|\n"
for r in results:
output += f"| {r['text']} | {r['original']} bytes | {r['compressed']} tokens | {r['ratio']:.2f}x |\n"
# Average stats
if results:
avg_ratio = sum(r['ratio'] for r in results) / len(results)
total_original = sum(r['original'] for r in results)
total_compressed = sum(r['compressed'] for r in results)
output += f"\n**Summary:**\n"
output += f"- Average Compression: {avg_ratio:.2f}x\n"
output += f"- Total Original: {total_original} bytes\n"
output += f"- Total Compressed: {total_compressed} tokens\n"
output += f"- Overall Ratio: {total_original/total_compressed if total_compressed > 0 else 0:.2f}x\n"
return output
except Exception as e:
return f"Error: {str(e)}"
# Initialize demo
print("Initializing Intelligent Tokenizer Demo...")
demo = IntelligentTokenizerDemo()
# Gradio Interface
with gr.Blocks(title="Intelligent Tokenizer v6.0", theme=gr.themes.Base()) as app:
gr.Markdown("""
# ๐Ÿš€ Intelligent Tokenizer v6.0 - Live Demo
**World's First Pure Learning-Based Byte-Level Tokenizer**
- No vocabulary files, no language rules - just intelligence!
- 260 fixed vocab (256 bytes + 4 special tokens)
- Works with ANY language/script/emoji
""")
with gr.Tab("๐Ÿ”ค Embedding"):
with gr.Row():
with gr.Column():
embed_input = gr.Textbox(
label="Input Text",
placeholder="Enter any text in any language...",
lines=3
)
embed_btn = gr.Button("Generate Embedding", variant="primary")
with gr.Column():
embed_output = gr.Markdown(label="Result")
embed_btn.click(
lambda x: demo.embed_text(x)[1],
inputs=embed_input,
outputs=embed_output
)
with gr.Tab("๐Ÿ”„ Restoration"):
with gr.Row():
with gr.Column():
restore_input = gr.Textbox(
label="Input Text",
placeholder="Enter text to test restoration...",
lines=3
)
restore_btn = gr.Button("Test Restoration", variant="primary")
with gr.Column():
restore_output = gr.Markdown(label="Result")
restore_btn.click(
demo.restore_text,
inputs=restore_input,
outputs=restore_output
)
with gr.Tab("๐Ÿ“Š Compression Analysis"):
with gr.Row():
with gr.Column():
compress_input = gr.Textbox(
label="Input Text (one item per line)",
placeholder="Enter multiple texts, one per line...",
lines=5
)
compress_btn = gr.Button("Analyze Compression", variant="primary")
with gr.Column():
compress_output = gr.Markdown(label="Analysis")
compress_btn.click(
demo.compress_stats,
inputs=compress_input,
outputs=compress_output
)
with gr.Tab("โ„น๏ธ About"):
gr.Markdown("""
## About Intelligent Tokenizer v6.0
### Key Features:
- **Pure Learning-Based**: No predefined rules or vocabularies
- **Universal Coverage**: Works with all 204+ languages equally
- **Compression**: 2-3x currently, targeting 5-10x
- **Real Model**: This demo uses the actual trained model (1.2GB)
### Architecture:
- Encoder: 5-layer transformer (512โ†’768 dims)
- Decoder: 6-layer transformer (768 hidden)
- Total: ~274M parameters
- Training: 23 epochs on multilingual data
### Development:
- Solo developer, 4 months development
- Trained on personal RTX 3060
- No prior AI experience
### Links:
- [GitHub Repository](https://github.com/ggunio/intelligent-tokenizer)
- [Hugging Face Model](https://huggingface.co/ggunio/intelligent-tokenizer-v6)
""")
if __name__ == "__main__":
print(f"Running on device: {device}")
print("Launching Gradio app...")
app.launch()