Spaces:
Running
on
L40S
Running
on
L40S
Commit
·
80c639a
1
Parent(s):
2a04008
Committing in broken state for sharing with HF
Browse files- app.py +77 -6
- requirements.txt +1 -1
app.py
CHANGED
|
@@ -11,7 +11,8 @@ import transformers
|
|
| 11 |
# the nature of the task (e.g., fatcual responses are lower entropy) or it could
|
| 12 |
# be another
|
| 13 |
|
| 14 |
-
_MODEL_IDENTIFIER = '
|
|
|
|
| 15 |
|
| 16 |
_PROMPTS: tuple[str] = (
|
| 17 |
'prompt 1',
|
|
@@ -25,7 +26,7 @@ _TORCH_DEVICE = (
|
|
| 25 |
torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
|
| 26 |
)
|
| 27 |
|
| 28 |
-
|
| 29 |
ngram_len=5,
|
| 30 |
keys=[
|
| 31 |
654,
|
|
@@ -64,12 +65,32 @@ _WATERMARK_CONFIG = transformers.generation.SynthIDTextWatermarkingConfig(
|
|
| 64 |
context_history_size=1024,
|
| 65 |
)
|
| 66 |
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
tokenizer = transformers.AutoTokenizer.from_pretrained(_MODEL_IDENTIFIER)
|
| 69 |
tokenizer.pad_token_id = tokenizer.eos_token_id
|
|
|
|
| 70 |
model = transformers.AutoModelForCausalLM.from_pretrained(_MODEL_IDENTIFIER)
|
| 71 |
model.to(_TORCH_DEVICE)
|
| 72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
@spaces.GPU
|
| 75 |
def generate_outputs(
|
|
@@ -86,10 +107,50 @@ def generate_outputs(
|
|
| 86 |
max_length=500,
|
| 87 |
top_k=40,
|
| 88 |
)
|
|
|
|
|
|
|
| 89 |
return tokenizer.batch_decode(output_sequences)
|
| 90 |
|
| 91 |
|
| 92 |
with gr.Blocks() as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
prompt_inputs = [
|
| 94 |
gr.Textbox(value=prompt, lines=4, label='Prompt')
|
| 95 |
for prompt in _PROMPTS
|
|
@@ -97,6 +158,11 @@ with gr.Blocks() as demo:
|
|
| 97 |
generate_btn = gr.Button('Generate')
|
| 98 |
|
| 99 |
with gr.Column(visible=False) as generations_col:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
generations_grp = gr.CheckboxGroup(
|
| 101 |
label='All generations, in random order',
|
| 102 |
info='Select the generations you think are watermarked!',
|
|
@@ -104,6 +170,11 @@ with gr.Blocks() as demo:
|
|
| 104 |
reveal_btn = gr.Button('Reveal', visible=False)
|
| 105 |
|
| 106 |
with gr.Column(visible=False) as detections_col:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
revealed_grp = gr.CheckboxGroup(
|
| 108 |
label='Ground truth for all generations',
|
| 109 |
info=(
|
|
@@ -160,10 +231,10 @@ with gr.Blocks() as demo:
|
|
| 160 |
value.append(choice)
|
| 161 |
|
| 162 |
return {
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
}
|
| 168 |
|
| 169 |
reveal_btn.click(
|
|
|
|
| 11 |
# the nature of the task (e.g., fatcual responses are lower entropy) or it could
|
| 12 |
# be another
|
| 13 |
|
| 14 |
+
_MODEL_IDENTIFIER = 'google/gemma-2b'
|
| 15 |
+
_DETECTOR_IDENTIFIER = 'gg-hf/detector_2b_1.0_demo'
|
| 16 |
|
| 17 |
_PROMPTS: tuple[str] = (
|
| 18 |
'prompt 1',
|
|
|
|
| 26 |
torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
|
| 27 |
)
|
| 28 |
|
| 29 |
+
_WATERMARK_CONFIG_DICT = dict(
|
| 30 |
ngram_len=5,
|
| 31 |
keys=[
|
| 32 |
654,
|
|
|
|
| 65 |
context_history_size=1024,
|
| 66 |
)
|
| 67 |
|
| 68 |
+
_WATERMARK_CONFIG = transformers.generation.SynthIDTextWatermarkingConfig(
|
| 69 |
+
**_WATERMARK_CONFIG_DICT
|
| 70 |
+
)
|
| 71 |
|
| 72 |
tokenizer = transformers.AutoTokenizer.from_pretrained(_MODEL_IDENTIFIER)
|
| 73 |
tokenizer.pad_token_id = tokenizer.eos_token_id
|
| 74 |
+
|
| 75 |
model = transformers.AutoModelForCausalLM.from_pretrained(_MODEL_IDENTIFIER)
|
| 76 |
model.to(_TORCH_DEVICE)
|
| 77 |
|
| 78 |
+
logits_processor = transformers.generation.SynthIDTextWatermarkLogitsProcessor(
|
| 79 |
+
**_WATERMARK_CONFIG_DICT,
|
| 80 |
+
device=_TORCH_DEVICE,
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
detector_module = transformers.generation.BayesianDetectorModel.from_pretrained(
|
| 84 |
+
_DETECTOR_IDENTIFIER,
|
| 85 |
+
)
|
| 86 |
+
detector_module.to(_TORCH_DEVICE)
|
| 87 |
+
|
| 88 |
+
detector = transformers.generation.watermarking.BayesianDetectorModel(
|
| 89 |
+
detector_module=detector_module,
|
| 90 |
+
logits_processor=logits_processor,
|
| 91 |
+
tokenizer=tokenizer,
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
|
| 95 |
@spaces.GPU
|
| 96 |
def generate_outputs(
|
|
|
|
| 107 |
max_length=500,
|
| 108 |
top_k=40,
|
| 109 |
)
|
| 110 |
+
detections = detector(output_sequences)
|
| 111 |
+
print(detections)
|
| 112 |
return tokenizer.batch_decode(output_sequences)
|
| 113 |
|
| 114 |
|
| 115 |
with gr.Blocks() as demo:
|
| 116 |
+
gr.Markdown(
|
| 117 |
+
'''
|
| 118 |
+
# Using SynthID Text in your Genreative AI projects
|
| 119 |
+
|
| 120 |
+
[SynthID][synthid] is a Google DeepMind technology that watermarks and
|
| 121 |
+
identifies AI-generated content by embedding digital watermarks directly
|
| 122 |
+
into AI-generated images, audio, text or video.
|
| 123 |
+
|
| 124 |
+
SynthID Text is an open source implementation of this technology available
|
| 125 |
+
in Hugging Face Transformers that has two major components:
|
| 126 |
+
|
| 127 |
+
* A [logits processor][synthid-hf-logits-processor] that is
|
| 128 |
+
[configured][synthid-hf-config] on a per-model basis and activated when
|
| 129 |
+
calling `.generate()`; and
|
| 130 |
+
* A [detector][synthid-hf-detector] trained to recognized watermarked text
|
| 131 |
+
generated by a specific model with a specific configuraiton.
|
| 132 |
+
|
| 133 |
+
This Space demonstrates:
|
| 134 |
+
|
| 135 |
+
1. How to use SynthID Text to apply a watermark to text generated by your
|
| 136 |
+
model; and
|
| 137 |
+
1. How to indetify that text using a ready-made detector.
|
| 138 |
+
|
| 139 |
+
Note that this detector is trained specifically fore this demonstration. You
|
| 140 |
+
should maintain a specific watermarking configuration for every model you
|
| 141 |
+
use and protect that configuration as you would any other secret. See the
|
| 142 |
+
[end-to-end guide][synthid-hf-detector-e2e] for more on training your own
|
| 143 |
+
detectors, and the [SynthID Text documentaiton][raitk-synthid] for more on
|
| 144 |
+
how this technology works.
|
| 145 |
+
|
| 146 |
+
[raitk-synthid]: /responsible/docs/safeguards/synthid
|
| 147 |
+
[synthid]: https://deepmind.google/technologies/synthid/
|
| 148 |
+
[synthid-hf-config]: https://github.com/huggingface/transformers/blob/v4.46.0/src/transformers/generation/configuration_utils.py
|
| 149 |
+
[synthid-hf-detector]: https://github.com/huggingface/transformers/blob/v4.46.0/src/transformers/generation/watermarking.py
|
| 150 |
+
[synthid-hf-detector-e2e]: https://github.com/huggingface/transformers/blob/v4.46.0/examples/research_projects/synthid_text/detector_bayesian.py
|
| 151 |
+
[synthid-hf-logits-processor]: https://github.com/huggingface/transformers/blob/v4.46.0/src/transformers/generation/logits_process.py
|
| 152 |
+
'''
|
| 153 |
+
)
|
| 154 |
prompt_inputs = [
|
| 155 |
gr.Textbox(value=prompt, lines=4, label='Prompt')
|
| 156 |
for prompt in _PROMPTS
|
|
|
|
| 158 |
generate_btn = gr.Button('Generate')
|
| 159 |
|
| 160 |
with gr.Column(visible=False) as generations_col:
|
| 161 |
+
gr.Markdown(
|
| 162 |
+
'''
|
| 163 |
+
# SynthID: Tool
|
| 164 |
+
'''
|
| 165 |
+
)
|
| 166 |
generations_grp = gr.CheckboxGroup(
|
| 167 |
label='All generations, in random order',
|
| 168 |
info='Select the generations you think are watermarked!',
|
|
|
|
| 170 |
reveal_btn = gr.Button('Reveal', visible=False)
|
| 171 |
|
| 172 |
with gr.Column(visible=False) as detections_col:
|
| 173 |
+
gr.Markdown(
|
| 174 |
+
'''
|
| 175 |
+
# SynthID: Tool
|
| 176 |
+
'''
|
| 177 |
+
)
|
| 178 |
revealed_grp = gr.CheckboxGroup(
|
| 179 |
label='Ground truth for all generations',
|
| 180 |
info=(
|
|
|
|
| 231 |
value.append(choice)
|
| 232 |
|
| 233 |
return {
|
| 234 |
+
reveal_btn: gr.Button(visible=False),
|
| 235 |
+
detections_col: gr.Column(visible=True),
|
| 236 |
+
revealed_grp: gr.CheckboxGroup(choices=choices, value=value),
|
| 237 |
+
detect_btn: gr.Button(visible=True),
|
| 238 |
}
|
| 239 |
|
| 240 |
reveal_btn.click(
|
requirements.txt
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
gradio
|
| 2 |
spaces
|
| 3 |
-
transformers
|
| 4 |
|
| 5 |
--extra-index-url https://download.pytorch.org/whl/cu113
|
| 6 |
torch
|
|
|
|
| 1 |
gradio
|
| 2 |
spaces
|
| 3 |
+
transformers>=4.46.0
|
| 4 |
|
| 5 |
--extra-index-url https://download.pytorch.org/whl/cu113
|
| 6 |
torch
|