File size: 7,854 Bytes
746bf5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# app.py
import os
import uuid
import io
from PIL import Image
import gradio as gr
import numpy as np

# CLIP via Sentence-Transformers (text+image to same 512-dim space)
from sentence_transformers import SentenceTransformer

# Gemini (Google) client
from google import genai

# Qdrant client & helpers
from qdrant_client import QdrantClient
from qdrant_client.http.models import VectorParams, Distance, PointStruct

# -------------------------
#  CONFIG (reads env vars)
# -------------------------
GEMINI_API_KEY = os.environ.get("GEMINI_API_KEY")  # set in Hugging Face Space secrets
QDRANT_URL = os.environ.get("QDRANT_URL")          # set in Hugging Face Space secrets
QDRANT_API_KEY = os.environ.get("QDRANT_API_KEY")  # set in Hugging Face Space secrets

# Local fallbacks (for local testing) - set them before running locally if needed:
# os.environ["GEMINI_API_KEY"]="..." ; os.environ["QDRANT_URL"]="..." ; os.environ["QDRANT_API_KEY"]="..."

# -------------------------
#  Initialize clients/models
# -------------------------
print("Loading CLIP model (this may take 20-60s the first time)...")
MODEL_ID = "sentence-transformers/clip-ViT-B-32-multilingual-v1"
clip_model = SentenceTransformer(MODEL_ID)  # model maps text & images to same vector space

# Gemini client (for tags/captions)
if GEMINI_API_KEY:
    genai_client = genai.Client(api_key=GEMINI_API_KEY)
else:
    genai_client = None

# Qdrant client
if not QDRANT_URL:
    # If you prefer local Qdrant for dev: client = QdrantClient(":memory:") or local url
    raise RuntimeError("Please set QDRANT_URL environment variable")
qclient = QdrantClient(url=QDRANT_URL, api_key=QDRANT_API_KEY)

COLLECTION = "lost_found_items"
VECTOR_SIZE = 512

# Create collection if missing
if not qclient.collection_exists(COLLECTION):
    qclient.create_collection(
        collection_name=COLLECTION,
        vectors_config=VectorParams(size=VECTOR_SIZE, distance=Distance.COSINE),
    )

# -------------------------
#  Helpers
# -------------------------
def embed_text(text: str):
    vec = clip_model.encode(text, convert_to_numpy=True)
    return vec

def embed_image_pil(pil_img: Image.Image):
    # sentence-transformers supports directly encoding a PIL image for CLIP models
    vec = clip_model.encode(pil_img, convert_to_numpy=True)
    return vec

def gen_tags_from_image_file(local_path: str) -> str:
    """Upload image file to Gemini and ask for 4 short tags.
       Returns the raw text response (expected comma-separated tags)."""
    if genai_client is None:
        return ""
    # Upload file (Gemini Developer API supports client.files.upload)
    file_obj = genai_client.files.upload(file=local_path)
    # Ask Gemini: produce short tags only
    prompt_text = (
        "Give 4 short tags (comma-separated) describing this item in the image. "
        "Tags should be short single words or two-word phrases (e.g. 'black backpack', 'water bottle'). "
        "Respond only with tags, no extra explanation."
    )
    response = genai_client.models.generate_content(
        model="gemini-2.5-flash",
        contents=[prompt_text, file_obj],
    )
    return response.text.strip()

# -------------------------
#  App logic: add item
# -------------------------
def add_item(mode: str, uploaded_image, text_description: str):
    """
    mode: 'lost' or 'found'
    uploaded_image: PIL image or None
    text_description: str
    """
    item_id = str(uuid.uuid4())
    payload = {"mode": mode, "text": text_description}

    if uploaded_image is not None:
        # Save image to temp file (so we can upload to Gemini)
        tmp_path = f"/tmp/{item_id}.png"
        uploaded_image.save(tmp_path)
        # embed image
        vec = embed_image_pil(uploaded_image).tolist()
        payload["has_image"] = True
        # optional: get tags from Gemini (if available)
        try:
            tags = gen_tags_from_image_file(tmp_path)
        except Exception as e:
            tags = ""
        payload["tags"] = tags
        # store image bytes (tiny) so we can show result in the UI (base64)
        with open(tmp_path, "rb") as f:
            b64 = f.read()
        payload["image_b64"] = True  # flag (we will return/show image via Gradio from file bytes)
    else:
        # only text provided
        vec = embed_text(text_description).tolist()
        payload["has_image"] = False
        # ask Gemini to suggest tags from text
        if genai_client:
            try:
                resp = genai_client.models.generate_content(
                    model="gemini-2.5-flash",
                    contents=f"Give 4 short, comma-separated tags for this item described as: {text_description}. Reply only with tags."
                )
                payload["tags"] = resp.text.strip()
            except Exception:
                payload["tags"] = ""
        else:
            payload["tags"] = ""

    # Upsert into Qdrant
    point = PointStruct(id=item_id, vector=vec, payload=payload)
    qclient.upsert(collection_name=COLLECTION, points=[point], wait=True)

    return f"Saved item id: {item_id}\nTags: {payload.get('tags','')}"


# -------------------------
#  App logic: search
# -------------------------
def search_items(query_image, query_text, limit: int = 5):
    # produce query embedding
    if query_image is not None:
        qvec = embed_image_pil(query_image).tolist()
        q_type = "image"
    else:
        if (not query_text) or (len(query_text.strip()) == 0):
            return "Please provide a query image or some query text."
        qvec = embed_text(query_text).tolist()
        q_type = "text"

    hits = qclient.search(collection_name=COLLECTION, query_vector=qvec, limit=limit)

    # Format output (list)
    results = []
    for h in hits:
        payload = h.payload or {}
        score = getattr(h, "score", None)
        results.append(
            {
                "id": h.id,
                "score": float(score) if score is not None else None,
                "mode": payload.get("mode", ""),
                "text": payload.get("text", ""),
                "tags": payload.get("tags", ""),
                "has_image": payload.get("has_image", False),
            }
        )
    # Return a simple list for Gradio to show
    if not results:
        return "No results."
    # Convert to text for display
    out_lines = []
    for r in results:
        out_lines.append(f"id:{r['id']} score:{r['score']:.4f} mode:{r['mode']} tags:{r['tags']} text:{r['text']}")
    return "\n\n".join(out_lines)

# -------------------------
#  Gradio UI
# -------------------------
with gr.Blocks(title="Lost & Found — Simple Helper") as demo:
    gr.Markdown("## Lost & Found Helper (image/text search) — upload items, then search by image or text.")
    with gr.Row():
        with gr.Column():
            mode = gr.Radio(choices=["lost", "found"], value="lost", label="Add as")
            upload_img = gr.Image(type="pil", label="Item photo (optional)")
            text_desc = gr.Textbox(lines=2, placeholder="Short description (e.g. 'black backpack with blue zipper')", label="Description (optional)")
            add_btn = gr.Button("Add item")
            add_out = gr.Textbox(label="Add result", interactive=False)
        with gr.Column():
            gr.Markdown("### Search")
            query_img = gr.Image(type="pil", label="Search by image (optional)")
            query_text = gr.Textbox(lines=2, label="Search by text (optional)")
            search_btn = gr.Button("Search")
            search_out = gr.Textbox(label="Search results", interactive=False)

    add_btn.click(add_item, inputs=[mode, upload_img, text_desc], outputs=[add_out])
    search_btn.click(search_items, inputs=[query_img, query_text], outputs=[search_out])

if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860)