Spaces:
Runtime error
Runtime error
File size: 5,649 Bytes
dd67299 7c5c440 03852d5 dd67299 7fae8fb dd67299 03852d5 dd67299 03852d5 7c5c440 22ef1d5 dd67299 8f370f4 dd67299 7c5c440 dd67299 03852d5 8f370f4 dd67299 22ef1d5 dd67299 22ef1d5 03852d5 7c5c440 03852d5 0c4adc5 22ef1d5 7fae8fb 03852d5 dd67299 03852d5 7fae8fb 03852d5 22ef1d5 746bf5b dd67299 7c5c440 0d5f8a4 7c5c440 8f370f4 22ef1d5 7c5c440 03852d5 7fae8fb 7c5c440 8f370f4 22ef1d5 8f370f4 03852d5 dd67299 03852d5 8f370f4 a1501eb 22ef1d5 a06f639 7c5c440 dd67299 03852d5 dd67299 22ef1d5 dd67299 7c5c440 dd67299 03852d5 dd67299 03852d5 dd67299 03852d5 dd67299 22ef1d5 dd67299 7c5c440 03852d5 dd67299 03852d5 7c5c440 dd67299 22ef1d5 dd67299 8f370f4 dd67299 8f370f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
import os
import uuid
import gradio as gr
from PIL import Image
from qdrant_client import QdrantClient, models
from transformers import CLIPProcessor, CLIPModel
# ==============================
# Setup
# ==============================
UPLOAD_DIR = "uploaded_images"
os.makedirs(UPLOAD_DIR, exist_ok=True)
qclient = QdrantClient(":memory:")
COLLECTION = "lost_and_found"
# Create collection (with deprecation fix)
if not qclient.collection_exists(COLLECTION):
qclient.create_collection(
COLLECTION,
vectors_config=models.VectorParams(size=512, distance=models.Distance.COSINE),
)
# Load CLIP
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
clip_proc = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
# ==============================
# Encode Function
# ==============================
def encode_data(text=None, image=None):
if text:
inputs = clip_proc(text=[text], return_tensors="pt", padding=True)
return clip_model.get_text_features(**inputs).detach().numpy()[0]
if image:
inputs = clip_proc(images=image, return_tensors="pt")
return clip_model.get_image_features(**inputs).detach().numpy()[0]
raise ValueError("Need either text or image for encoding")
# ==============================
# Add Item
# ==============================
def add_item(mode, text, image, uploader_name, uploader_phone):
try:
img_path = None
if image:
img_id = str(uuid.uuid4())
img_path = os.path.join(UPLOAD_DIR, f"{img_id}.png")
image.save(img_path)
vector = encode_data(text=text if text else None, image=image if image else None)
qclient.upsert(
collection_name=COLLECTION,
points=[
models.PointStruct(
id=str(uuid.uuid4()),
vector=vector.tolist(),
payload={
"mode": mode,
"text": text or "",
"uploader_name": uploader_name or "N/A",
"uploader_phone": uploader_phone or "N/A",
"image_path": img_path,
"has_image": bool(image),
},
)
],
)
return f"β
Added successfully as {mode}!"
except Exception as e:
return f"β Error: {e}"
# ==============================
# Search Items
# ==============================
def search_items(text, image, max_results, min_score):
try:
vector = encode_data(text=text if text else None, image=image if image else None)
results = qclient.search(
collection_name=COLLECTION,
query_vector=vector.tolist(),
limit=max_results,
score_threshold=min_score,
with_payload=True,
)
texts, imgs = [], []
for r in results:
p = r.payload
desc = (
f"id:{r.id} | score:{r.score:.3f} | mode:{p.get('mode','')} | text:{p.get('text','')}"
)
# Always show uploader details
uploader_name = p.get("uploader_name", "N/A") or "N/A"
uploader_phone = p.get("uploader_phone", "N/A") or "N/A"
desc += f" | uploader:{uploader_name} ({uploader_phone})"
texts.append(desc)
if p.get("has_image") and "image_path" in p:
imgs.append(p["image_path"])
return "\n".join(texts) if texts else "No matches", imgs
except Exception as e:
return f"β Error: {e}", []
# ==============================
# Delete All
# ==============================
def clear_all():
qclient.recreate_collection(
COLLECTION, vectors_config=models.VectorParams(size=512, distance=models.Distance.COSINE)
)
return "ποΈ All items cleared."
# ==============================
# Gradio UI
# ==============================
with gr.Blocks() as demo:
gr.Markdown("# π Lost & Found Image/Text Search")
with gr.Tab("β Add Item"):
mode = gr.Radio(["lost", "found"], label="Mode", value="found")
text_in = gr.Textbox(label="Description (optional)")
img_in = gr.Image(type="pil", label="Upload Image")
uploader_name = gr.Textbox(label="Your Name")
uploader_phone = gr.Textbox(label="Your Phone")
add_btn = gr.Button("Add to Database")
add_out = gr.Textbox(label="Status")
add_btn.click(
add_item,
inputs=[mode, text_in, img_in, uploader_name, uploader_phone],
outputs=add_out,
)
with gr.Tab("π Search"):
search_text = gr.Textbox(label="Search by text (optional)")
search_img = gr.Image(type="pil", label="Search by image (optional)")
max_results = gr.Slider(1, 10, value=5, step=1, label="Max results")
min_score = gr.Slider(0.5, 1.0, value=0.8, step=0.01, label="Min similarity threshold")
search_btn = gr.Button("Search")
search_out = gr.Textbox(label="Search results (text)")
search_gallery = gr.Gallery(label="Search Results")
search_btn.click(
search_items,
inputs=[search_text, search_img, max_results, min_score],
outputs=[search_out, search_gallery],
)
with gr.Tab("ποΈ Admin"):
clear_btn = gr.Button("Clear All Items")
clear_out = gr.Textbox(label="Status")
clear_btn.click(clear_all, outputs=clear_out)
# ==============================
# Launch
# ==============================
if __name__ == "__main__":
demo.launch()
|