Spaces:
Running
Running
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from decoder import VAE_AttentionBlock, VAE_ResidualBlock | |
| class VAE_Encoder(nn.Sequential): | |
| def __init__(self): | |
| super().__init__( | |
| # (Batch_Size, Channel, Height, Width) -> (Batch_Size, 128, Height, Width) | |
| nn.Conv2d(3, 128, kernel_size=3, padding=1), | |
| # (Batch_Size, 128, Height, Width) -> (Batch_Size, 128, Height, Width) | |
| VAE_ResidualBlock(128, 128), | |
| VAE_ResidualBlock(128, 128), | |
| # (Batch_Size, 128, Height, Width) -> (Batch_Size, 128, Height/2 , Width/2) | |
| nn.Conv2d(128, 128, kernel_size=3,stride=2, padding=0), | |
| # (Batch_Size, 128, Height/2 , Width/2) -> (Batch_Size, 256, Height/2 , Width/2) | |
| VAE_ResidualBlock(128, 256), | |
| # (Batch_Size, 256, Height/2 , Width/2) -> (Batch_Size, 256, Height/2 , Width/2) | |
| VAE_ResidualBlock(256, 256), | |
| # (Batch_Size, 256, Height/2 , Width/2) -> (Batch_Size, 256, Height/4 , Width/4) | |
| nn.Conv2d(256, 256, kernel_size=3,stride=2, padding=0), | |
| # (Batch_Size, 256, Height/4 , Width/4) -> (Batch_Size, 512, Height/4 , Width/4) | |
| VAE_ResidualBlock(256, 512), | |
| # (Batch_Size, 512, Height/4 , Width/4) -> (Batch_Size, 512, Height/4 , Width/4) | |
| VAE_ResidualBlock(512, 512), | |
| # (Batch_Size, 512, Height/4 , Width/4) -> (Batch_Size, 512, Height/8 , Width/8) | |
| nn.Conv2d(512, 512, kernel_size=3,stride=2, padding=0), | |
| # (Batch_Size, 512, Height/8 , Width/8) -> (Batch_Size, 512, Height/8 , Width/8) | |
| VAE_ResidualBlock(512, 512), | |
| VAE_ResidualBlock(512, 512), | |
| VAE_ResidualBlock(512, 512), | |
| # (Batch_Size, 512, Height/8 , Width/8) -> (Batch_Size, 512, Height/8 , Width/8) | |
| VAE_AttentionBlock(512), | |
| VAE_ResidualBlock(512, 512), | |
| nn.GroupNorm(32, 512), | |
| nn.SiLU(), | |
| nn.Conv2d(512, 8, kernel_size=3, padding=1), | |
| # (Batch_Size, 8, Height/8, Width/8) -> (Batch_Size, 8, Height/8, Width/8) | |
| nn.Conv2d(8, 8, kernel_size=1, padding=0) | |
| ) | |
| def forward(self, x: torch.Tensor, noise: torch.Tensor) -> torch.Tensor: | |
| for module in self: | |
| if getattr(module, 'stride', None) == (2, 2): | |
| x=F.pad(x, (0,1,0,1)) | |
| x=module(x) | |
| # (Batch_Size, 8, Height, Height/8, Width/8) -> two tensors of shape (Batch_Size, 4, Height/8, Width/8) | |
| mean, log_var=torch.chunk(x, 2, dim=1) | |
| log_var=torch.clamp(log_var, -30, 20) | |
| var=log_var.exp() | |
| stdev=var.sqrt() | |
| Z=mean + stdev * noise | |
| Z*=0.18215 | |
| # print('-'*100) | |
| # print('Z shape: ', Z.shape) | |
| # print('-'*100) | |
| return Z | |
| if __name__ == "__main__": | |
| model = VAE_Encoder() | |
| model.eval() | |
| # Create a dummy input tensor: (batch_size=1, channels=3, height=64, width=64) | |
| x = torch.randn(1, 3, 64, 64) | |
| noise = torch.randn(1, 4, 8, 8) # Match the latent shape (Z) | |
| with torch.no_grad(): | |
| output = model(x, noise) | |
| print("Input shape :", x.shape) | |
| print("Output shape:", output.shape) | |