harsh99's picture
Update utils.py
915e59a verified
import os
import torchvision.transforms as transforms
from PIL import Image
import math
import PIL
import numpy as np
import torch
from PIL import Image
from accelerate.state import AcceleratorState
from packaging import version
import accelerate
from typing import List, Optional, Tuple, Set
# from diffusers import UNet2DConditionModel, SchedulerMixin
from tqdm import tqdm
from PIL import Image, ImageFilter
def get_time_embedding(timesteps):
# Handle both scalar and batch inputs
if timesteps.dim() == 0:
timesteps = timesteps.unsqueeze(0)
# Shape: (160,)
freqs = torch.pow(10000, -torch.arange(start=0, end=160, dtype=torch.float32, device=timesteps.device) / 160)
# Shape: (B, 160)
x = timesteps.float()[:, None] * freqs[None]
# Shape: (B, 320)
return torch.cat([torch.cos(x), torch.sin(x)], dim=-1)
def repaint(person, mask, result):
_, h = result.size
kernal_size = h // 50
if kernal_size % 2 == 0:
kernal_size += 1
mask = mask.filter(ImageFilter.GaussianBlur(kernal_size))
person_np = np.array(person)
result_np = np.array(result)
mask_np = np.array(mask) / 255
repaint_result = person_np * (1 - mask_np) + result_np * mask_np
repaint_result = Image.fromarray(repaint_result.astype(np.uint8))
return repaint_result
def to_pil_image(images):
images = (images / 2 + 0.5).clamp(0, 1)
images = images.cpu().permute(0, 2, 3, 1).float().numpy()
if images.ndim == 3:
images = images[None, ...]
images = (images * 255).round().astype("uint8")
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
else:
pil_images = [Image.fromarray(image) for image in images]
return pil_images
# Prepare the input for inpainting model.
def prepare_inpainting_input(
noisy_latents: torch.Tensor,
mask_latents: torch.Tensor,
condition_latents: torch.Tensor,
enable_condition_noise: bool = True,
condition_concat_dim: int = -1,
) -> torch.Tensor:
"""
Prepare the input for inpainting model.
Args:
noisy_latents (torch.Tensor): Noisy latents.
mask_latents (torch.Tensor): Mask latents.
condition_latents (torch.Tensor): Condition latents.
enable_condition_noise (bool): Enable condition noise.
Returns:
torch.Tensor: Inpainting input.
"""
if not enable_condition_noise:
condition_latents_ = condition_latents.chunk(2, dim=condition_concat_dim)[-1]
noisy_latents = torch.cat([noisy_latents, condition_latents_], dim=condition_concat_dim)
noisy_latents = torch.cat([noisy_latents, mask_latents, condition_latents], dim=1)
return noisy_latents
# Compute VAE encodings
def compute_vae_encodings(image_tensor, encoder, device="cpu"):
"""Encode image using VAE encoder"""
# Generate random noise for encoding
encoder_noise = torch.randn(
(image_tensor.shape[0], 4, image_tensor.shape[2] // 8, image_tensor.shape[3] // 8),
device=device,
)
# Encode using your custom encoder
latent = encoder(image_tensor, encoder_noise)
return latent
def check_inputs(image, condition_image, mask, width, height):
if isinstance(image, torch.Tensor) and isinstance(condition_image, torch.Tensor) and isinstance(mask, torch.Tensor):
return image, condition_image, mask
assert image.size == mask.size, "Image and mask must have the same size"
image = resize_and_crop(image, (width, height))
mask = resize_and_crop(mask, (width, height))
condition_image = resize_and_padding(condition_image, (width, height))
return image, condition_image, mask
def check_inputs_maskfree(image, condition_image, width, height):
if isinstance(image, torch.Tensor) and isinstance(condition_image, torch.Tensor):
return image, condition_image
image = resize_and_crop(image, (width, height))
condition_image = resize_and_padding(condition_image, (width, height))
return image, condition_image
def repaint_result(result, person_image, mask_image):
result, person, mask = np.array(result), np.array(person_image), np.array(mask_image)
# expand the mask to 3 channels & to 0~1
mask = np.expand_dims(mask, axis=2)
mask = mask / 255.0
# mask for result, ~mask for person
result_ = result * mask + person * (1 - mask)
return Image.fromarray(result_.astype(np.uint8))
def prepare_image(image):
if isinstance(image, torch.Tensor):
# Batch single image
if image.ndim == 3:
image = image.unsqueeze(0)
image = image.to(dtype=torch.float32)
else:
# preprocess image
if isinstance(image, (PIL.Image.Image, np.ndarray)):
image = [image]
if isinstance(image, list) and isinstance(image[0], PIL.Image.Image):
image = [np.array(i.convert("RGB"))[None, :] for i in image]
image = np.concatenate(image, axis=0)
elif isinstance(image, list) and isinstance(image[0], np.ndarray):
image = np.concatenate([i[None, :] for i in image], axis=0)
image = image.transpose(0, 3, 1, 2)
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
return image
def prepare_mask_image(mask_image):
if isinstance(mask_image, torch.Tensor):
if mask_image.ndim == 2:
# Batch and add channel dim for single mask
mask_image = mask_image.unsqueeze(0).unsqueeze(0)
elif mask_image.ndim == 3 and mask_image.shape[0] == 1:
# Single mask, the 0'th dimension is considered to be
# the existing batch size of 1
mask_image = mask_image.unsqueeze(0)
elif mask_image.ndim == 3 and mask_image.shape[0] != 1:
# Batch of mask, the 0'th dimension is considered to be
# the batching dimension
mask_image = mask_image.unsqueeze(1)
# Binarize mask
mask_image[mask_image < 0.5] = 0
mask_image[mask_image >= 0.5] = 1
else:
# preprocess mask
if isinstance(mask_image, (PIL.Image.Image, np.ndarray)):
mask_image = [mask_image]
if isinstance(mask_image, list) and isinstance(mask_image[0], PIL.Image.Image):
mask_image = np.concatenate(
[np.array(m.convert("L"))[None, None, :] for m in mask_image], axis=0
)
mask_image = mask_image.astype(np.float32) / 255.0
elif isinstance(mask_image, list) and isinstance(mask_image[0], np.ndarray):
mask_image = np.concatenate([m[None, None, :] for m in mask_image], axis=0)
mask_image[mask_image < 0.5] = 0
mask_image[mask_image >= 0.5] = 1
mask_image = torch.from_numpy(mask_image)
return mask_image
def numpy_to_pil(images):
"""
Convert a numpy image or a batch of images to a PIL image.
"""
if images.ndim == 3:
images = images[None, ...]
images = (images * 255).round().astype("uint8")
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
else:
pil_images = [Image.fromarray(image) for image in images]
return pil_images
def tensor_to_image(tensor: torch.Tensor):
"""
Converts a torch tensor to PIL Image.
"""
assert tensor.dim() == 3, "Input tensor should be 3-dimensional."
assert tensor.dtype == torch.float32, "Input tensor should be float32."
assert (
tensor.min() >= 0 and tensor.max() <= 1
), "Input tensor should be in range [0, 1]."
tensor = tensor.cpu()
tensor = tensor * 255
tensor = tensor.permute(1, 2, 0)
tensor = tensor.numpy().astype(np.uint8)
image = Image.fromarray(tensor)
return image
def resize_and_crop(image, size):
# Crop to size ratio
w, h = image.size
target_w, target_h = size
if w / h < target_w / target_h:
new_w = w
new_h = w * target_h // target_w
else:
new_h = h
new_w = h * target_w // target_h
image = image.crop(
((w - new_w) // 2, (h - new_h) // 2, (w + new_w) // 2, (h + new_h) // 2)
)
# resize
image = image.resize(size, Image.LANCZOS)
return image
def resize_and_padding(image, size):
# Padding to size ratio
w, h = image.size
target_w, target_h = size
if w / h < target_w / target_h:
new_h = target_h
new_w = w * target_h // h
else:
new_w = target_w
new_h = h * target_w // w
image = image.resize((new_w, new_h), Image.LANCZOS)
# padding
padding = Image.new("RGB", size, (255, 255, 255))
padding.paste(image, ((target_w - new_w) // 2, (target_h - new_h) // 2))
return padding
def save_debug_visualization(
person_images, cloth_images, masks, masked_image,
noisy_latents, predicted_noise, target_latents,
decoder, global_step, output_dir, device="cuda"
):
"""
Simple debug visualization function to save training progress images.
Args:
person_images: Original person images [B, 3, H, W]
cloth_images: Cloth/garment images [B, 3, H, W]
masks: Mask images [B, 1, H, W]
masked_image: Person image with mask applied [B, 3, H, W]
noisy_latents: Noisy latents fed to model [B, C, h, w]
predicted_noise: Model's predicted noise [B, C, h, w]
target_latents: Ground truth latents [B, C, h, w]
decoder: VAE decoder model
global_step: Current training step
output_dir: Directory to save images
device: Device to use
"""
try:
with torch.no_grad():
# Take first sample from batch
person_img = person_images[0:1] # [1, 3, H, W]
cloth_img = cloth_images[0:1]
mask_img = masks[0:1]
masked_img = masked_image[0:1]
# Split concatenated latents if needed (assuming concat on height dim)
if target_latents.shape[-2] > noisy_latents.shape[-2] // 2:
# Latents are concatenated, split them
h = target_latents.shape[-2] // 2
noisy_person_latent = noisy_latents[0:1, :, :h, :]
predicted_person_latent = (noisy_person_latent - predicted_noise[0:1, :, :h, :])
target_person_latent = target_latents[0:1, :, :h, :]
else:
noisy_person_latent = noisy_latents[0:1]
predicted_person_latent = (noisy_person_latent - predicted_noise[0:1])
target_person_latent = target_latents[0:1]
# Decode latents to images
with torch.cuda.amp.autocast(enabled=False):
noisy_decoded = decoder(noisy_person_latent.float())
predicted_decoded = decoder(predicted_person_latent.float())
target_decoded = decoder(target_person_latent.float())
# Convert to PIL images
def tensor_to_pil(tensor):
# tensor: [1, 3, H, W] in range [-1, 1] or [0, 1]
tensor = tensor.squeeze(0) # [3, H, W]
tensor = torch.clamp((tensor + 1.0) / 2.0, 0, 1) # Normalize to [0,1]
tensor = tensor.cpu()
transform = transforms.ToPILImage()
return transform(tensor)
# Convert mask to PIL (single channel)
def mask_to_pil(tensor):
tensor = tensor.squeeze() # Remove batch and channel dims
tensor = torch.clamp(tensor, 0, 1)
tensor = tensor.cpu()
# Convert to 3-channel for visualization
tensor_3ch = tensor.unsqueeze(0).repeat(3, 1, 1)
transform = transforms.ToPILImage()
return transform(tensor_3ch)
# Convert all tensors to PIL images
person_pil = tensor_to_pil(person_img)
cloth_pil = tensor_to_pil(cloth_img)
mask_pil = mask_to_pil(mask_img)
masked_pil = tensor_to_pil(masked_img)
noisy_pil = tensor_to_pil(noisy_decoded)
predicted_pil = tensor_to_pil(predicted_decoded)
target_pil = tensor_to_pil(target_decoded)
# Create labels
labels = ['Person', 'Cloth', 'Mask', 'Masked', 'Noisy', 'Predicted', 'Target']
images = [person_pil, cloth_pil, mask_pil, masked_pil, noisy_pil, predicted_pil, target_pil]
# Get dimensions
width, height = person_pil.size
# Create combined image (horizontal layout)
combined_width = width * len(images)
combined_height = height + 30 # Extra space for labels
combined_img = Image.new('RGB', (combined_width, combined_height), 'white')
# Paste images side by side with labels
from PIL import ImageDraw, ImageFont
draw = ImageDraw.Draw(combined_img)
try:
# Try to use a default font
font = ImageFont.load_default()
except:
font = None
for i, (img, label) in enumerate(zip(images, labels)):
x_offset = i * width
combined_img.paste(img, (x_offset, 30))
# Add label
if font:
draw.text((x_offset + 5, 5), label, fill='black', font=font)
else:
draw.text((x_offset + 5, 5), label, fill='black')
# Save the combined image
debug_dir = os.path.join(output_dir, 'debug_viz')
os.makedirs(debug_dir, exist_ok=True)
save_path = os.path.join(debug_dir, f'debug_step_{global_step:06d}.jpg')
combined_img.save(save_path, 'JPEG', quality=95)
print(f"Debug visualization saved: {save_path}")
except Exception as e:
print(f"Error in debug visualization: {e}")