Update app.py
Browse files
app.py
CHANGED
|
@@ -2,9 +2,8 @@ import gradio as gr
|
|
| 2 |
from gradio_client import Client
|
| 3 |
from PIL import Image
|
| 4 |
import os
|
| 5 |
-
import traceback
|
| 6 |
-
import random
|
| 7 |
import time
|
|
|
|
| 8 |
|
| 9 |
# Create Client instances for the repositories
|
| 10 |
clients = [
|
|
@@ -15,13 +14,15 @@ clients = [
|
|
| 15 |
# Counter for image filenames to avoid overwriting
|
| 16 |
count = 0
|
| 17 |
|
|
|
|
|
|
|
|
|
|
| 18 |
# Gradio Interface Function to handle image generation
|
| 19 |
def infer_gradio(prompt: str):
|
| 20 |
-
global count
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
# Prepare the inputs for the prediction
|
| 26 |
inputs = {
|
| 27 |
"prompt": prompt,
|
|
@@ -32,8 +33,8 @@ def infer_gradio(prompt: str):
|
|
| 32 |
# Send the request to the model and receive the result (image URL or file path)
|
| 33 |
result = client.predict(inputs, api_name="/infer")
|
| 34 |
|
| 35 |
-
#
|
| 36 |
-
image = Image.open(result)
|
| 37 |
|
| 38 |
# Create a unique filename to save the image
|
| 39 |
filename = f"img_{count:08d}.jpg"
|
|
@@ -46,6 +47,9 @@ def infer_gradio(prompt: str):
|
|
| 46 |
print(f"Saved image as {filename}")
|
| 47 |
|
| 48 |
# Return the image to be displayed in Gradio
|
|
|
|
|
|
|
|
|
|
| 49 |
return image
|
| 50 |
|
| 51 |
except Exception as e:
|
|
|
|
| 2 |
from gradio_client import Client
|
| 3 |
from PIL import Image
|
| 4 |
import os
|
|
|
|
|
|
|
| 5 |
import time
|
| 6 |
+
import traceback
|
| 7 |
|
| 8 |
# Create Client instances for the repositories
|
| 9 |
clients = [
|
|
|
|
| 14 |
# Counter for image filenames to avoid overwriting
|
| 15 |
count = 0
|
| 16 |
|
| 17 |
+
# Global counter for selecting clients in order
|
| 18 |
+
client_index = 0
|
| 19 |
+
|
| 20 |
# Gradio Interface Function to handle image generation
|
| 21 |
def infer_gradio(prompt: str):
|
| 22 |
+
global count, client_index
|
| 23 |
+
# Select the current client based on the client_index
|
| 24 |
+
client = clients[client_index]
|
| 25 |
+
|
|
|
|
| 26 |
# Prepare the inputs for the prediction
|
| 27 |
inputs = {
|
| 28 |
"prompt": prompt,
|
|
|
|
| 33 |
# Send the request to the model and receive the result (image URL or file path)
|
| 34 |
result = client.predict(inputs, api_name="/infer")
|
| 35 |
|
| 36 |
+
# Open the resulting image
|
| 37 |
+
image = Image.open(result)
|
| 38 |
|
| 39 |
# Create a unique filename to save the image
|
| 40 |
filename = f"img_{count:08d}.jpg"
|
|
|
|
| 47 |
print(f"Saved image as {filename}")
|
| 48 |
|
| 49 |
# Return the image to be displayed in Gradio
|
| 50 |
+
# Update the client_index to use the next client in the next call
|
| 51 |
+
client_index = (client_index + 1) % len(clients) # Cycle through clients
|
| 52 |
+
|
| 53 |
return image
|
| 54 |
|
| 55 |
except Exception as e:
|