Update app.py
Browse files
app.py
CHANGED
|
@@ -5,23 +5,20 @@ import os
|
|
| 5 |
import time
|
| 6 |
import traceback
|
| 7 |
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
Client("HelloSun/LCM_Dreamshaper_v7-int8-ov")
|
| 12 |
]
|
| 13 |
|
| 14 |
# Counter for image filenames to avoid overwriting
|
| 15 |
count = 0
|
| 16 |
-
|
| 17 |
-
# Global counter for selecting clients in order
|
| 18 |
-
client_index = 0
|
| 19 |
|
| 20 |
# Gradio Interface Function to handle image generation
|
| 21 |
def infer_gradio(prompt: str):
|
| 22 |
-
global count,
|
| 23 |
-
#
|
| 24 |
-
client =
|
| 25 |
|
| 26 |
# Prepare the inputs for the prediction
|
| 27 |
inputs = {
|
|
@@ -30,7 +27,7 @@ def infer_gradio(prompt: str):
|
|
| 30 |
}
|
| 31 |
|
| 32 |
try:
|
| 33 |
-
# Send the request to the model and receive the
|
| 34 |
result = client.predict(inputs, api_name="/infer")
|
| 35 |
|
| 36 |
# Open the resulting image
|
|
@@ -46,10 +43,10 @@ def infer_gradio(prompt: str):
|
|
| 46 |
image.save(filename)
|
| 47 |
print(f"Saved image as {filename}")
|
| 48 |
|
| 49 |
-
#
|
| 50 |
-
|
| 51 |
-
client_index = (client_index + 1) % len(clients) # Cycle through clients
|
| 52 |
|
|
|
|
| 53 |
return image
|
| 54 |
|
| 55 |
except Exception as e:
|
|
@@ -64,13 +61,13 @@ with gr.Blocks() as demo:
|
|
| 64 |
with gr.Row(): # Use a Row to place the prompt input and the button side by side
|
| 65 |
prompt_input = gr.Textbox(
|
| 66 |
label="Enter Your Prompt",
|
| 67 |
-
show_label=False,
|
| 68 |
placeholder="Type your prompt for image generation here",
|
| 69 |
lines=1, # Set the input to be only one line tall
|
| 70 |
interactive=True # Allow user to interact with the textbox
|
| 71 |
)
|
| 72 |
|
| 73 |
-
# Change the button text to "RUN" and align it with the prompt input
|
| 74 |
run_button = gr.Button("RUN")
|
| 75 |
|
| 76 |
# Output image display area
|
|
|
|
| 5 |
import time
|
| 6 |
import traceback
|
| 7 |
|
| 8 |
+
repos = [
|
| 9 |
+
"hsuwill000/LCM_SoteMix_OpenVINO_CPU_Space_TAESD",
|
| 10 |
+
"HelloSun/LCM_Dreamshaper_v7-int8-ov"
|
|
|
|
| 11 |
]
|
| 12 |
|
| 13 |
# Counter for image filenames to avoid overwriting
|
| 14 |
count = 0
|
| 15 |
+
repo_index = 0 # This will keep track of the current repository
|
|
|
|
|
|
|
| 16 |
|
| 17 |
# Gradio Interface Function to handle image generation
|
| 18 |
def infer_gradio(prompt: str):
|
| 19 |
+
global count, repo_index
|
| 20 |
+
# Create a Client instance to communicate with the Hugging Face space
|
| 21 |
+
client = Client(repos[repo_index])
|
| 22 |
|
| 23 |
# Prepare the inputs for the prediction
|
| 24 |
inputs = {
|
|
|
|
| 27 |
}
|
| 28 |
|
| 29 |
try:
|
| 30 |
+
# Send the request to the model and receive the image
|
| 31 |
result = client.predict(inputs, api_name="/infer")
|
| 32 |
|
| 33 |
# Open the resulting image
|
|
|
|
| 43 |
image.save(filename)
|
| 44 |
print(f"Saved image as {filename}")
|
| 45 |
|
| 46 |
+
# Increment the repo_index to choose the next repository in the list
|
| 47 |
+
repo_index = (repo_index + 1) % len(repos) # Cycle through repos list
|
|
|
|
| 48 |
|
| 49 |
+
# Return the image to be displayed in Gradio
|
| 50 |
return image
|
| 51 |
|
| 52 |
except Exception as e:
|
|
|
|
| 61 |
with gr.Row(): # Use a Row to place the prompt input and the button side by side
|
| 62 |
prompt_input = gr.Textbox(
|
| 63 |
label="Enter Your Prompt",
|
| 64 |
+
show_label = "False",
|
| 65 |
placeholder="Type your prompt for image generation here",
|
| 66 |
lines=1, # Set the input to be only one line tall
|
| 67 |
interactive=True # Allow user to interact with the textbox
|
| 68 |
)
|
| 69 |
|
| 70 |
+
# Change the button text to "RUN:" and align it with the prompt input
|
| 71 |
run_button = gr.Button("RUN")
|
| 72 |
|
| 73 |
# Output image display area
|