orbmol / app.py
annabossler's picture
Update app.py
4a6a364 verified
raw
history blame
15.2 kB
import os
import tempfile
import numpy as np
import gradio as gr
from ase.io import read, write
from ase.io.trajectory import Trajectory
import hashlib
# ==== Usar componente nativo Molecule3D ====
try:
from gradio_molecule3d import Molecule3D
HAVE_MOL3D = True
print("✅ gradio_molecule3d loaded successfully")
except Exception as e:
HAVE_MOL3D = False
print(f"❌ gradio_molecule3d not available: {e}")
# ==== Función para convertir trayectoria a archivo temporal PDB ====
def traj_to_molecule3d_file(traj_path):
"""
Convierte una trayectoria ASE (.traj) a un archivo PDB temporal para Molecule3D.
Retorna el path del archivo temporal (.pdb).
"""
if not traj_path or not os.path.exists(traj_path):
return None
try:
traj = Trajectory(traj_path)
if len(traj) == 0:
return None
# Usar último frame para visualización estática
atoms = traj[-1]
# Crear archivo PDB temporal (formato aceptado por Molecule3D)
with tempfile.NamedTemporaryFile(suffix=".pdb", delete=False) as f:
pdb_path = f.name
write(pdb_path, atoms) # extensión .pdb selecciona el formato automáticamente
return pdb_path
except Exception as e:
print(f"Error converting trajectory: {e}")
return None
# ==== Fallback HTML con 3Dmol.js (por si acaso) ====
def traj_to_html(traj_path, width=520, height=520, interval_ms=200):
"""
Fallback HTML viewer (solo si Molecule3D no está disponible).
"""
if not traj_path or not os.path.exists(traj_path):
return "<div style='color:#b00; padding:20px;'>No trajectory file found</div>"
viewer_id = f"viewer_{abs(hash(traj_path)) % 10000}"
try:
traj = Trajectory(traj_path)
if len(traj) == 0:
return "<div style='color:#555; padding:20px;'>Empty trajectory</div>"
except Exception as e:
return f"<div style='color:#b00; padding:20px;'>Error: {e}</div>"
xyz_frames = []
for atoms in traj:
symbols = atoms.get_chemical_symbols()
coords = atoms.get_positions()
parts = [str(len(symbols)), "frame"]
for s, (x, y, z) in zip(symbols, coords):
parts.append(f"{s} {x:.6f} {y:.6f} {z:.6f}")
xyz_frames.append("\n".join(parts))
frames_json = str(xyz_frames).replace("'", '"')
html = f"""
<div style="margin-bottom:10px; padding:10px; background:#f5f5f5; border-radius:5px;">
<strong>🧬 3D Molecular Viewer</strong> - {len(xyz_frames)} frames
</div>
<div id="{viewer_id}" style="width:{width}px; height:{height}px; position:relative; border:2px solid #ddd; border-radius:8px; background:#fafafa;"></div>
<script>
if (typeof window.$3Dmol === 'undefined') {{
var script = document.createElement('script');
script.src = 'https://3dmol.org/build/3Dmol-min.js';
script.onload = function() {{
setTimeout(function() {{ initViewer_{viewer_id}(); }}, 100);
}};
document.head.appendChild(script);
}} else {{
initViewer_{viewer_id}();
}}
function initViewer_{viewer_id}() {{
var el = document.getElementById("{viewer_id}");
if (!el || typeof $3Dmol === "undefined") return;
var viewer = $3Dmol.createViewer(el, {{backgroundColor: 'white'}});
var frames = {frames_json};
var currentFrame = 0;
function showFrame(frameIndex) {{
viewer.clear();
viewer.addModel(frames[frameIndex], "xyz");
viewer.setStyle({{}}, {{stick: {{radius: 0.1}}, sphere: {{radius: 0.3}}}});
viewer.zoomTo();
viewer.render();
}}
showFrame(0);
if (frames.length > 1) {{
setInterval(function() {{
currentFrame = (currentFrame + 1) % frames.length;
showFrame(currentFrame);
}}, {interval_ms});
}}
}}
</script>
"""
return html
# ==== OrbMol SPE directo (sin cambios) ====
from orb_models.forcefield import pretrained
from orb_models.forcefield.calculator import ORBCalculator
_MODEL_CALC = None
def _load_orbmol_calc():
global _MODEL_CALC
if _MODEL_CALC is None:
orbff = pretrained.orb_v3_conservative_inf_omat(
device="cpu", precision="float32-high"
)
_MODEL_CALC = ORBCalculator(orbff, device="cpu")
return _MODEL_CALC
def predict_molecule(xyz_content, charge=0, spin_multiplicity=1):
"""
Single Point Energy + fuerzas. No escribe nada salvo un .xyz temporal.
"""
try:
calc = _load_orbmol_calc()
if not xyz_content or not xyz_content.strip():
return "Error: Please enter XYZ coordinates", "Error"
with tempfile.NamedTemporaryFile(mode="w", suffix=".xyz", delete=False) as f:
f.write(xyz_content)
xyz_file = f.name
atoms = read(xyz_file)
atoms.info = {"charge": int(charge), "spin": int(spin_multiplicity)}
atoms.calc = calc
energy = atoms.get_potential_energy() # eV
forces = atoms.get_forces() # eV/Å
lines = [f"Total Energy: {energy:.6f} eV", "", "Atomic Forces:"]
for i, fc in enumerate(forces):
lines.append(f"Atom {i+1}: [{fc[0]:.4f}, {fc[1]:.4f}, {fc[2]:.4f}] eV/Å")
max_force = float(np.max(np.linalg.norm(forces, axis=1)))
lines += ["", f"Max Force: {max_force:.4f} eV/Å"]
try:
os.unlink(xyz_file)
except Exception:
pass
return "\n".join(lines), "Calculation completed with OrbMol"
except Exception as e:
return f"Error during calculation: {e}", "Error"
# ==== Simulaciones (sin cambios) ====
from simulation_scripts_orbmol import (
run_md_simulation,
run_relaxation_simulation,
)
def _string_looks_like_xyz(text: str) -> bool:
try:
first = (text or "").strip().splitlines()[0]
int(first.split()[0])
return True
except Exception:
return False
def _to_file_if_xyz(input_or_path: str):
if isinstance(input_or_path, str) and _string_looks_like_xyz(input_or_path):
tf = tempfile.NamedTemporaryFile(mode="w", suffix=".xyz", delete=False)
tf.write(input_or_path)
tf.flush(); tf.close()
return tf.name, True
return input_or_path, False
# Wrappers actualizados para devolver archivos para Molecule3D
def md_wrapper(xyz_content, charge, spin, steps, tempK, timestep_fs, ensemble):
tmp_created = False
path_or_str = xyz_content
try:
path_or_str, tmp_created = _to_file_if_xyz(xyz_content)
traj_path, log_text, script_text, explanation = run_md_simulation(
path_or_str,
int(steps),
20, # pre-relax fija
float(timestep_fs),
float(tempK),
"NVT" if ensemble == "NVT" else "NVE",
int(charge),
int(spin),
)
status = f"MD completed: {int(steps)} steps at {int(tempK)} K ({ensemble})"
# Usar Molecule3D si está disponible, sino HTML
if HAVE_MOL3D:
pdb_file = traj_to_molecule3d_file(traj_path)
return (status, traj_path, log_text, script_text, explanation, pdb_file, "")
else:
html_value = traj_to_html(traj_path)
return (status, traj_path, log_text, script_text, explanation, None, html_value)
except Exception as e:
return (f"Error: {e}", None, "", "", "", None, "")
finally:
if tmp_created and isinstance(path_or_str, str) and os.path.exists(path_or_str):
try: os.remove(path_or_str)
except Exception: pass
def relax_wrapper(xyz_content, steps, fmax, charge, spin, relax_cell):
tmp_created = False
path_or_str = xyz_content
try:
path_or_str, tmp_created = _to_file_if_xyz(xyz_content)
traj_path, log_text, script_text, explanation = run_relaxation_simulation(
path_or_str,
int(steps),
float(fmax),
int(charge),
int(spin),
bool(relax_cell),
)
status = f"Relaxation finished (≤ {int(steps)} steps, fmax={float(fmax)} eV/Å)"
# Usar Molecule3D si está disponible, sino HTML
if HAVE_MOL3D:
pdb_file = traj_to_molecule3d_file(traj_path)
return (status, traj_path, log_text, script_text, explanation, pdb_file, "")
else:
html_value = traj_to_html(traj_path)
return (status, traj_path, log_text, script_text, explanation, None, html_value)
except Exception as e:
return (f"Error: {e}", None, "", "", "", None, "")
finally:
if tmp_created and isinstance(path_or_str, str) and os.path.exists(path_or_str):
try:
os.remove(path_or_str)
except Exception:
pass
# ==== Ejemplos (sin cambios) ====
examples = [
["""2
Hydrogen molecule
H 0.0 0.0 0.0
H 0.0 0.0 0.74""", 0, 1],
["""3
Water molecule
O 0.0000 0.0000 0.0000
H 0.7571 0.0000 0.5864
H -0.7571 0.0000 0.5864""", 0, 1],
["""5
Methane
C 0.0000 0.0000 0.0000
H 1.0890 0.0000 0.0000
H -0.3630 1.0267 0.0000
H -0.3630 -0.5133 0.8887
H -0.3630 -0.5133 -0.8887""", 0, 1],
]
# ==== UI actualizada ====
with gr.Blocks(theme=gr.themes.Ocean(), title="OrbMol Demo") as demo:
with gr.Tabs():
# -------- SPE (sin cambios) --------
with gr.Tab("Single Point Energy"):
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("# OrbMol — Quantum-Accurate Molecular Predictions")
gr.Markdown("Energías y fuerzas con **charge** y **spin multiplicity**.")
xyz_input = gr.Textbox(label="XYZ Coordinates", lines=12, placeholder="Paste XYZ here…")
with gr.Row():
charge_input = gr.Slider(minimum=-10, maximum=10, value=0, step=1, label="Charge")
spin_input = gr.Slider(minimum=1, maximum=11, value=1, step=1, label="Spin Multiplicity")
run_spe = gr.Button("Run OrbMol Prediction", variant="primary")
with gr.Column(variant="panel", min_width=500):
spe_out = gr.Textbox(label="Energy & Forces", lines=15, interactive=False)
spe_status = gr.Textbox(label="Status", interactive=False, max_lines=1)
gr.Examples(examples=examples, inputs=[xyz_input, charge_input, spin_input])
run_spe.click(predict_molecule, [xyz_input, charge_input, spin_input], [spe_out, spe_status])
# -------- MD (actualizada con Molecule3D) --------
with gr.Tab("Molecular Dynamics"):
with gr.Row():
with gr.Column(scale=2):
xyz_md = gr.Textbox(label="XYZ Coordinates or path (.xyz/.traj/.pdb/.cif)", lines=12, placeholder="Paste XYZ or path here…")
with gr.Row():
charge_md = gr.Slider(minimum=-10, maximum=10, value=0, step=1, label="Charge")
spin_md = gr.Slider(minimum=1, maximum=11, value=1, step=1, label="Spin Multiplicity")
with gr.Row():
steps_md = gr.Slider(minimum=10, maximum=2000, value=100, step=10, label="Steps")
temp_md = gr.Slider(minimum=10, maximum=1500, value=300, step=10, label="Temperature (K)")
with gr.Row():
timestep_md = gr.Slider(minimum=0.1, maximum=5.0, value=1.0, step=0.1, label="Timestep (fs)")
ensemble_md = gr.Radio(["NVE", "NVT"], value="NVE", label="Ensemble")
run_md_btn = gr.Button("Run MD Simulation", variant="primary")
with gr.Column(variant="panel", min_width=520):
md_status = gr.Textbox(label="MD Status", interactive=False)
md_traj = gr.File(label="Trajectory (.traj)", interactive=False)
# Usar Molecule3D si está disponible
if HAVE_MOL3D:
md_viewer = Molecule3D(label="3D Molecular Viewer")
md_html = gr.HTML(visible=False) # Oculto cuando usamos Molecule3D
else:
md_viewer = gr.HTML(visible=False) # Placeholder
md_html = gr.HTML(label="Trajectory Viewer")
md_log = gr.Textbox(label="Log", interactive=False, lines=15, max_lines=25)
md_script = gr.Code(label="Reproduction Script", language="python", interactive=False, lines=20, max_lines=30)
md_explain = gr.Markdown()
run_md_btn.click(
md_wrapper,
inputs=[xyz_md, charge_md, spin_md, steps_md, temp_md, timestep_md, ensemble_md],
outputs=[md_status, md_traj, md_log, md_script, md_explain, md_viewer, md_html],
)
# -------- Relax (actualizada con Molecule3D) --------
with gr.Tab("Relaxation / Optimization"):
with gr.Row():
with gr.Column(scale=2):
xyz_rlx = gr.Textbox(label="XYZ Coordinates or path (.xyz/.traj/.pdb/.cif)", lines=12, placeholder="Paste XYZ or path here…")
steps_rlx = gr.Slider(minimum=1, maximum=2000, value=300, step=1, label="Max Steps")
fmax_rlx = gr.Slider(minimum=0.001, maximum=0.5, value=0.05, step=0.001, label="Fmax (eV/Å)")
with gr.Row():
charge_rlx = gr.Slider(minimum=-10, maximum=10, value=0, step=1, label="Charge")
spin_rlx = gr.Slider(minimum=1, maximum=11, value=1, step=1, label="Spin")
relax_cell = gr.Checkbox(False, label="Relax Unit Cell")
run_rlx_btn = gr.Button("Run Optimization", variant="primary")
with gr.Column(variant="panel", min_width=520):
rlx_status = gr.Textbox(label="Status", interactive=False)
rlx_traj = gr.File(label="Trajectory (.traj)", interactive=False)
# Usar Molecule3D si está disponible
if HAVE_MOL3D:
rlx_viewer = Molecule3D(label="Final Structure")
rlx_html = gr.HTML(visible=False) # Oculto cuando usamos Molecule3D
else:
rlx_viewer = gr.HTML(visible=False) # Placeholder
rlx_html = gr.HTML(label="Final Structure")
rlx_log = gr.Textbox(label="Log", interactive=False, lines=15, max_lines=25)
rlx_script = gr.Code(label="Reproduction Script", language="python", interactive=False, lines=20, max_lines=30)
rlx_explain = gr.Markdown()
run_rlx_btn.click(
relax_wrapper,
inputs=[xyz_rlx, steps_rlx, fmax_rlx, charge_rlx, spin_rlx, relax_cell],
outputs=[rlx_status, rlx_traj, rlx_log, rlx_script, rlx_explain, rlx_viewer, rlx_html],
)
print("Starting OrbMol model loading…")
_ = _load_orbmol_calc()
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860, show_error=True)