Spaces:
Sleeping
Sleeping
Updare retrive creation
Browse files- seminar_edition_ai.py +6 -1
seminar_edition_ai.py
CHANGED
|
@@ -278,13 +278,18 @@ def predictArgumentQuestionBuild(questionAnswer, llmModelList = []):
|
|
| 278 |
)
|
| 279 |
global retriever
|
| 280 |
global HISTORY_ANSWER
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 281 |
|
| 282 |
if retriever == None:
|
| 283 |
doc = Document(page_content="text", metadata={"source": "local"})
|
| 284 |
|
| 285 |
vectorstore = Chroma.from_documents(
|
| 286 |
documents=[doc],
|
| 287 |
-
embedding=embed_model,
|
| 288 |
persist_directory="chroma_db_dir_sermon", # Local mode with in-memory storage only
|
| 289 |
collection_name="sermon_lab_ai"
|
| 290 |
)
|
|
|
|
| 278 |
)
|
| 279 |
global retriever
|
| 280 |
global HISTORY_ANSWER
|
| 281 |
+
global embed_model
|
| 282 |
+
|
| 283 |
+
if embed_model == None:
|
| 284 |
+
llmBuilder = GeminiLLM()
|
| 285 |
+
embed_model = llmBuilder.getEmbeddingsModel()
|
| 286 |
|
| 287 |
if retriever == None:
|
| 288 |
doc = Document(page_content="text", metadata={"source": "local"})
|
| 289 |
|
| 290 |
vectorstore = Chroma.from_documents(
|
| 291 |
documents=[doc],
|
| 292 |
+
embedding = embed_model,
|
| 293 |
persist_directory="chroma_db_dir_sermon", # Local mode with in-memory storage only
|
| 294 |
collection_name="sermon_lab_ai"
|
| 295 |
)
|