Revert "Update: Face Verfication added"
Browse filesThis reverts commit 9b173c696b8172406d8c1c2cd07aa2ead5f15ab6.
- README.md +10 -106
- app.py +25 -216
- releaf_ai.py +4 -50
- requirements.txt +6 -9
README.md
CHANGED
|
@@ -1,108 +1,12 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
- **Secure Authentication**: Face-based verification for action submissions
|
| 11 |
-
|
| 12 |
-
## API Endpoints
|
| 13 |
-
|
| 14 |
-
### 1. Health Check
|
| 15 |
-
```
|
| 16 |
-
GET /
|
| 17 |
-
```
|
| 18 |
-
Returns API status and information.
|
| 19 |
-
|
| 20 |
-
### 2. Face Verification
|
| 21 |
-
```
|
| 22 |
-
POST /verify-face
|
| 23 |
-
```
|
| 24 |
-
**Parameters:**
|
| 25 |
-
- `reference_face`: Image file (stored user face)
|
| 26 |
-
- `current_face`: Image file (captured face for verification)
|
| 27 |
-
|
| 28 |
-
**Response:**
|
| 29 |
-
```json
|
| 30 |
-
{
|
| 31 |
-
"verified": true,
|
| 32 |
-
"similarity": 85.6,
|
| 33 |
-
"threshold": 60.0,
|
| 34 |
-
"message": "Face verified successfully"
|
| 35 |
-
}
|
| 36 |
-
```
|
| 37 |
-
|
| 38 |
-
### 3. Eco-Action Analysis
|
| 39 |
-
```
|
| 40 |
-
POST /predict
|
| 41 |
-
```
|
| 42 |
-
**Parameters:**
|
| 43 |
-
- `file`: Image or video file of eco-action
|
| 44 |
-
- `reference_face`: (Optional) Reference face image for verification
|
| 45 |
-
|
| 46 |
-
**Response:**
|
| 47 |
-
```json
|
| 48 |
-
{
|
| 49 |
-
"points": 15,
|
| 50 |
-
"task": "Recycling plastic bottles",
|
| 51 |
-
"face_verified": true,
|
| 52 |
-
"similarity": 87.3,
|
| 53 |
-
"raw": "Full AI response..."
|
| 54 |
-
}
|
| 55 |
-
```
|
| 56 |
-
|
| 57 |
-
## Supported Activities
|
| 58 |
-
|
| 59 |
-
- β»οΈ Recycling and waste management
|
| 60 |
-
- π± Tree planting and gardening
|
| 61 |
-
- β‘ Clean energy usage
|
| 62 |
-
- π Sustainable transportation
|
| 63 |
-
- π§Ή Environmental cleanup
|
| 64 |
-
- π§ Water conservation
|
| 65 |
-
- π Composting
|
| 66 |
-
- π Sustainable shopping
|
| 67 |
-
|
| 68 |
-
## Scoring System
|
| 69 |
-
|
| 70 |
-
Activities are scored from 0-30 points based on:
|
| 71 |
-
- **Impact Level**: Higher impact = more points
|
| 72 |
-
- **Authenticity**: Genuine activities get full points
|
| 73 |
-
- **Scale**: Larger scale activities get bonus points
|
| 74 |
-
- **Innovation**: Creative eco-solutions get extra recognition
|
| 75 |
-
|
| 76 |
-
## Face Verification
|
| 77 |
-
|
| 78 |
-
- **Threshold**: 60% similarity required for verification
|
| 79 |
-
- **Security**: Prevents fraudulent submissions
|
| 80 |
-
- **Privacy**: Face data processed in real-time, not stored
|
| 81 |
-
- **Accuracy**: Uses state-of-the-art face recognition algorithms
|
| 82 |
-
|
| 83 |
-
## Technology Stack
|
| 84 |
-
|
| 85 |
-
- **FastAPI**: High-performance web framework
|
| 86 |
-
- **Together AI**: Advanced language model for activity recognition
|
| 87 |
-
- **OpenCV**: Computer vision processing
|
| 88 |
-
- **face_recognition**: Facial recognition and verification
|
| 89 |
-
- **PIL/Pillow**: Image processing
|
| 90 |
-
|
| 91 |
-
## Environment Variables
|
| 92 |
-
|
| 93 |
-
- `TOGETHER_API_KEY`: API key for Together AI service
|
| 94 |
-
|
| 95 |
-
## Local Development
|
| 96 |
-
|
| 97 |
-
```bash
|
| 98 |
-
pip install -r requirements.txt
|
| 99 |
-
uvicorn app:app --reload --host 0.0.0.0 --port 7860
|
| 100 |
-
```
|
| 101 |
-
|
| 102 |
-
## Deployment
|
| 103 |
-
|
| 104 |
-
This API is designed to run on Hugging Face Spaces with automatic scaling and GPU acceleration.
|
| 105 |
-
|
| 106 |
---
|
| 107 |
|
| 108 |
-
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: Mmm
|
| 3 |
+
emoji: π
|
| 4 |
+
colorFrom: purple
|
| 5 |
+
colorTo: blue
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 5.34.0
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
|
@@ -7,272 +7,81 @@ import base64
|
|
| 7 |
import cv2
|
| 8 |
import io
|
| 9 |
import re
|
| 10 |
-
import face_recognition
|
| 11 |
-
import numpy as np
|
| 12 |
from together import Together
|
| 13 |
-
import releaf_ai
|
| 14 |
|
| 15 |
app = FastAPI()
|
| 16 |
|
| 17 |
-
#
|
| 18 |
API_KEY = "1495bcdf0c72ed1e15d0e3e31e4301bd665cb28f2291bcc388164ed745a7aa24"
|
| 19 |
client = Together(api_key=API_KEY)
|
| 20 |
MODEL_NAME = "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8"
|
|
|
|
| 21 |
SYSTEM_PROMPT = releaf_ai.SYSTEM_PROMPT
|
| 22 |
|
| 23 |
def encode_image_to_base64(image: Image.Image) -> str:
|
| 24 |
-
"""Convert PIL Image to base64 string"""
|
| 25 |
buffered = io.BytesIO()
|
| 26 |
image.save(buffered, format="JPEG")
|
| 27 |
return base64.b64encode(buffered.getvalue()).decode("utf-8")
|
| 28 |
|
| 29 |
def extract_score(text: str):
|
| 30 |
-
"""Extract score from AI response"""
|
| 31 |
match = re.search(r"(?i)Score:\s*(\d+)", text)
|
| 32 |
return int(match.group(1)) if match else None
|
| 33 |
|
| 34 |
def extract_activity(text: str):
|
| 35 |
-
"""Extract activity from AI response"""
|
| 36 |
match = re.search(r"(?i)Detected Activity:\s*(.+?)\n", text)
|
| 37 |
return match.group(1).strip() if match else "Unknown"
|
| 38 |
|
| 39 |
-
def verify_faces(reference_face_bytes: bytes, current_face_bytes: bytes) -> dict:
|
| 40 |
-
"""
|
| 41 |
-
Verify if two face images match
|
| 42 |
-
Returns: {"verified": bool, "similarity": float, "error": str}
|
| 43 |
-
"""
|
| 44 |
-
try:
|
| 45 |
-
# Convert bytes to numpy arrays
|
| 46 |
-
ref_np = np.frombuffer(reference_face_bytes, np.uint8)
|
| 47 |
-
curr_np = np.frombuffer(current_face_bytes, np.uint8)
|
| 48 |
-
|
| 49 |
-
# Decode images
|
| 50 |
-
ref_img = cv2.imdecode(ref_np, cv2.IMREAD_COLOR)
|
| 51 |
-
curr_img = cv2.imdecode(curr_np, cv2.IMREAD_COLOR)
|
| 52 |
-
|
| 53 |
-
if ref_img is None or curr_img is None:
|
| 54 |
-
return {"verified": False, "similarity": 0.0, "error": "Could not decode images"}
|
| 55 |
-
|
| 56 |
-
# Convert BGR to RGB (face_recognition expects RGB)
|
| 57 |
-
ref_rgb = cv2.cvtColor(ref_img, cv2.COLOR_BGR2RGB)
|
| 58 |
-
curr_rgb = cv2.cvtColor(curr_img, cv2.COLOR_BGR2RGB)
|
| 59 |
-
|
| 60 |
-
# Get face encodings
|
| 61 |
-
ref_encodings = face_recognition.face_encodings(ref_rgb)
|
| 62 |
-
curr_encodings = face_recognition.face_encodings(curr_rgb)
|
| 63 |
-
|
| 64 |
-
if len(ref_encodings) == 0:
|
| 65 |
-
return {"verified": False, "similarity": 0.0, "error": "No face found in reference image"}
|
| 66 |
-
|
| 67 |
-
if len(curr_encodings) == 0:
|
| 68 |
-
return {"verified": False, "similarity": 0.0, "error": "No face found in current image"}
|
| 69 |
-
|
| 70 |
-
# Use the first face found in each image
|
| 71 |
-
ref_encoding = ref_encodings[0]
|
| 72 |
-
curr_encoding = curr_encodings[0]
|
| 73 |
-
|
| 74 |
-
# Calculate face distance (lower = more similar)
|
| 75 |
-
face_distance = face_recognition.face_distance([ref_encoding], curr_encoding)[0]
|
| 76 |
-
|
| 77 |
-
# Convert distance to similarity percentage (0-100)
|
| 78 |
-
similarity = max(0, (1 - face_distance) * 100)
|
| 79 |
-
|
| 80 |
-
# Verification threshold (adjust as needed)
|
| 81 |
-
VERIFICATION_THRESHOLD = 60.0 # 60% similarity required
|
| 82 |
-
verified = similarity >= VERIFICATION_THRESHOLD
|
| 83 |
-
|
| 84 |
-
return {
|
| 85 |
-
"verified": verified,
|
| 86 |
-
"similarity": round(similarity, 2),
|
| 87 |
-
"error": None
|
| 88 |
-
}
|
| 89 |
-
|
| 90 |
-
except Exception as e:
|
| 91 |
-
return {"verified": False, "similarity": 0.0, "error": str(e)}
|
| 92 |
-
|
| 93 |
-
@app.get("/")
|
| 94 |
-
async def root():
|
| 95 |
-
return {"message": "ReLeaf AI API with Face Verification", "status": "active"}
|
| 96 |
-
|
| 97 |
-
@app.post("/verify-face")
|
| 98 |
-
async def verify_face_endpoint(
|
| 99 |
-
reference_face: UploadFile = File(...),
|
| 100 |
-
current_face: UploadFile = File(...)
|
| 101 |
-
):
|
| 102 |
-
"""
|
| 103 |
-
Standalone face verification endpoint
|
| 104 |
-
"""
|
| 105 |
-
try:
|
| 106 |
-
# Validate file types
|
| 107 |
-
if not reference_face.content_type.startswith("image"):
|
| 108 |
-
raise HTTPException(status_code=400, detail="Reference face must be an image")
|
| 109 |
-
|
| 110 |
-
if not current_face.content_type.startswith("image"):
|
| 111 |
-
raise HTTPException(status_code=400, detail="Current face must be an image")
|
| 112 |
-
|
| 113 |
-
# Read file bytes
|
| 114 |
-
ref_bytes = await reference_face.read()
|
| 115 |
-
curr_bytes = await current_face.read()
|
| 116 |
-
|
| 117 |
-
# Perform face verification
|
| 118 |
-
result = verify_faces(ref_bytes, curr_bytes)
|
| 119 |
-
|
| 120 |
-
if result["error"]:
|
| 121 |
-
raise HTTPException(status_code=400, detail=result["error"])
|
| 122 |
-
|
| 123 |
-
return JSONResponse({
|
| 124 |
-
"verified": result["verified"],
|
| 125 |
-
"similarity": result["similarity"],
|
| 126 |
-
"threshold": 60.0,
|
| 127 |
-
"message": "Face verified successfully" if result["verified"] else "Face verification failed"
|
| 128 |
-
})
|
| 129 |
-
|
| 130 |
-
except HTTPException:
|
| 131 |
-
raise
|
| 132 |
-
except Exception as e:
|
| 133 |
-
raise HTTPException(status_code=500, detail=f"Face verification error: {str(e)}")
|
| 134 |
-
|
| 135 |
@app.post("/predict")
|
| 136 |
-
async def predict(
|
| 137 |
-
file: UploadFile = File(...),
|
| 138 |
-
reference_face: UploadFile = File(None)
|
| 139 |
-
):
|
| 140 |
-
"""
|
| 141 |
-
Main prediction endpoint with optional face verification
|
| 142 |
-
"""
|
| 143 |
try:
|
| 144 |
-
face_verification_result = None
|
| 145 |
-
|
| 146 |
-
# Perform face verification if reference face is provided
|
| 147 |
-
if reference_face and reference_face.filename:
|
| 148 |
-
if not reference_face.content_type.startswith("image"):
|
| 149 |
-
raise HTTPException(status_code=400, detail="Reference face must be an image")
|
| 150 |
-
|
| 151 |
-
# Extract face from the action image/video for verification
|
| 152 |
-
action_file_bytes = await file.read()
|
| 153 |
-
ref_face_bytes = await reference_face.read()
|
| 154 |
-
|
| 155 |
-
# Reset file position for later processing
|
| 156 |
-
await file.seek(0)
|
| 157 |
-
|
| 158 |
-
# For video files, extract a frame first
|
| 159 |
-
if file.content_type.startswith("video"):
|
| 160 |
-
# Save video temporarily
|
| 161 |
-
temp_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name
|
| 162 |
-
with open(temp_path, "wb") as f:
|
| 163 |
-
f.write(action_file_bytes)
|
| 164 |
-
|
| 165 |
-
# Extract first frame for face verification
|
| 166 |
-
cap = cv2.VideoCapture(temp_path)
|
| 167 |
-
ret, frame = cap.read()
|
| 168 |
-
cap.release()
|
| 169 |
-
os.remove(temp_path)
|
| 170 |
-
|
| 171 |
-
if ret:
|
| 172 |
-
# Convert frame to bytes
|
| 173 |
-
_, buffer = cv2.imencode('.jpg', frame)
|
| 174 |
-
action_face_bytes = buffer.tobytes()
|
| 175 |
-
else:
|
| 176 |
-
raise HTTPException(status_code=400, detail="Could not extract frame from video")
|
| 177 |
-
else:
|
| 178 |
-
action_face_bytes = action_file_bytes
|
| 179 |
-
|
| 180 |
-
# Verify faces
|
| 181 |
-
face_verification_result = verify_faces(ref_face_bytes, action_face_bytes)
|
| 182 |
-
|
| 183 |
-
# If face verification fails, return early
|
| 184 |
-
if not face_verification_result["verified"]:
|
| 185 |
-
return JSONResponse({
|
| 186 |
-
"points": 0,
|
| 187 |
-
"task": "Face verification failed",
|
| 188 |
-
"face_verified": False,
|
| 189 |
-
"similarity": face_verification_result["similarity"],
|
| 190 |
-
"error": face_verification_result["error"] or "Face does not match registered user",
|
| 191 |
-
"raw": "Face verification failed - action not processed"
|
| 192 |
-
})
|
| 193 |
-
|
| 194 |
-
# Process the action image/video for AI scoring
|
| 195 |
if file.content_type.startswith("image"):
|
| 196 |
image = Image.open(io.BytesIO(await file.read())).convert("RGB")
|
|
|
|
| 197 |
elif file.content_type.startswith("video"):
|
| 198 |
-
|
| 199 |
-
temp_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name
|
| 200 |
with open(temp_path, "wb") as f:
|
| 201 |
f.write(await file.read())
|
| 202 |
-
|
| 203 |
-
# Extract frames from video
|
| 204 |
cap = cv2.VideoCapture(temp_path)
|
| 205 |
-
|
| 206 |
-
interval = max(
|
| 207 |
-
|
| 208 |
frames = []
|
| 209 |
for i in range(9):
|
| 210 |
cap.set(cv2.CAP_PROP_POS_FRAMES, i * interval)
|
| 211 |
ret, frame = cap.read()
|
| 212 |
if ret:
|
| 213 |
-
|
| 214 |
-
img = Image.fromarray(
|
| 215 |
frames.append(img)
|
| 216 |
-
|
| 217 |
cap.release()
|
| 218 |
os.remove(temp_path)
|
| 219 |
-
|
| 220 |
-
if not frames:
|
| 221 |
-
raise HTTPException(status_code=400, detail="Could not extract frames from video")
|
| 222 |
-
|
| 223 |
-
# Create grid of frames
|
| 224 |
w, h = frames[0].size
|
| 225 |
grid = Image.new("RGB", (3 * w, 3 * h))
|
| 226 |
for idx, frame in enumerate(frames):
|
| 227 |
grid.paste(frame, ((idx % 3) * w, (idx // 3) * h))
|
| 228 |
image = grid
|
|
|
|
| 229 |
else:
|
| 230 |
raise HTTPException(status_code=400, detail="Unsupported file type")
|
| 231 |
-
|
| 232 |
-
# Convert image to base64 for AI processing
|
| 233 |
b64_img = encode_image_to_base64(image)
|
| 234 |
-
|
| 235 |
-
# Prepare messages for AI
|
| 236 |
messages = [
|
| 237 |
{"role": "system", "content": SYSTEM_PROMPT},
|
| 238 |
{"role": "user", "content": [
|
| 239 |
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{b64_img}"}}
|
| 240 |
]}
|
| 241 |
]
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
response = client.chat.completions.create(
|
| 245 |
-
model=MODEL_NAME,
|
| 246 |
-
messages=messages
|
| 247 |
-
)
|
| 248 |
-
|
| 249 |
-
ai_reply = response.choices[0].message.content
|
| 250 |
-
|
| 251 |
-
# Extract score and activity from AI response
|
| 252 |
-
points = extract_score(ai_reply)
|
| 253 |
-
task = extract_activity(ai_reply)
|
| 254 |
-
|
| 255 |
-
# Prepare final response
|
| 256 |
-
result = {
|
| 257 |
-
"points": points or 0,
|
| 258 |
-
"task": task,
|
| 259 |
-
"raw": ai_reply
|
| 260 |
-
}
|
| 261 |
-
|
| 262 |
-
# Add face verification results if performed
|
| 263 |
-
if face_verification_result:
|
| 264 |
-
result.update({
|
| 265 |
-
"face_verified": face_verification_result["verified"],
|
| 266 |
-
"similarity": face_verification_result["similarity"]
|
| 267 |
-
})
|
| 268 |
-
|
| 269 |
-
return JSONResponse(result)
|
| 270 |
-
|
| 271 |
-
except HTTPException:
|
| 272 |
-
raise
|
| 273 |
-
except Exception as e:
|
| 274 |
-
raise HTTPException(status_code=500, detail=f"Processing error: {str(e)}")
|
| 275 |
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
import cv2
|
| 8 |
import io
|
| 9 |
import re
|
|
|
|
|
|
|
| 10 |
from together import Together
|
| 11 |
+
import releaf_ai # this should still contain your SYSTEM_PROMPT
|
| 12 |
|
| 13 |
app = FastAPI()
|
| 14 |
|
| 15 |
+
# Init Together client
|
| 16 |
API_KEY = "1495bcdf0c72ed1e15d0e3e31e4301bd665cb28f2291bcc388164ed745a7aa24"
|
| 17 |
client = Together(api_key=API_KEY)
|
| 18 |
MODEL_NAME = "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8"
|
| 19 |
+
|
| 20 |
SYSTEM_PROMPT = releaf_ai.SYSTEM_PROMPT
|
| 21 |
|
| 22 |
def encode_image_to_base64(image: Image.Image) -> str:
|
|
|
|
| 23 |
buffered = io.BytesIO()
|
| 24 |
image.save(buffered, format="JPEG")
|
| 25 |
return base64.b64encode(buffered.getvalue()).decode("utf-8")
|
| 26 |
|
| 27 |
def extract_score(text: str):
|
|
|
|
| 28 |
match = re.search(r"(?i)Score:\s*(\d+)", text)
|
| 29 |
return int(match.group(1)) if match else None
|
| 30 |
|
| 31 |
def extract_activity(text: str):
|
|
|
|
| 32 |
match = re.search(r"(?i)Detected Activity:\s*(.+?)\n", text)
|
| 33 |
return match.group(1).strip() if match else "Unknown"
|
| 34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
@app.post("/predict")
|
| 36 |
+
async def predict(file: UploadFile = File(...)):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
if file.content_type.startswith("image"):
|
| 39 |
image = Image.open(io.BytesIO(await file.read())).convert("RGB")
|
| 40 |
+
|
| 41 |
elif file.content_type.startswith("video"):
|
| 42 |
+
temp_path = tempfile.NamedTemporaryFile(delete=False).name
|
|
|
|
| 43 |
with open(temp_path, "wb") as f:
|
| 44 |
f.write(await file.read())
|
| 45 |
+
|
|
|
|
| 46 |
cap = cv2.VideoCapture(temp_path)
|
| 47 |
+
total = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 48 |
+
interval = max(total // 9, 1)
|
| 49 |
+
|
| 50 |
frames = []
|
| 51 |
for i in range(9):
|
| 52 |
cap.set(cv2.CAP_PROP_POS_FRAMES, i * interval)
|
| 53 |
ret, frame = cap.read()
|
| 54 |
if ret:
|
| 55 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 56 |
+
img = Image.fromarray(frame).resize((256, 256))
|
| 57 |
frames.append(img)
|
|
|
|
| 58 |
cap.release()
|
| 59 |
os.remove(temp_path)
|
| 60 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
w, h = frames[0].size
|
| 62 |
grid = Image.new("RGB", (3 * w, 3 * h))
|
| 63 |
for idx, frame in enumerate(frames):
|
| 64 |
grid.paste(frame, ((idx % 3) * w, (idx // 3) * h))
|
| 65 |
image = grid
|
| 66 |
+
|
| 67 |
else:
|
| 68 |
raise HTTPException(status_code=400, detail="Unsupported file type")
|
| 69 |
+
|
|
|
|
| 70 |
b64_img = encode_image_to_base64(image)
|
|
|
|
|
|
|
| 71 |
messages = [
|
| 72 |
{"role": "system", "content": SYSTEM_PROMPT},
|
| 73 |
{"role": "user", "content": [
|
| 74 |
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{b64_img}"}}
|
| 75 |
]}
|
| 76 |
]
|
| 77 |
+
res = client.chat.completions.create(model=MODEL_NAME, messages=messages)
|
| 78 |
+
reply = res.choices[0].message.content
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
+
return JSONResponse({
|
| 81 |
+
"points": extract_score(reply),
|
| 82 |
+
"task": extract_activity(reply),
|
| 83 |
+
"raw": reply
|
| 84 |
+
})
|
| 85 |
+
|
| 86 |
+
except Exception as e:
|
| 87 |
+
raise HTTPException(status_code=500, detail=str(e))
|
releaf_ai.py
CHANGED
|
@@ -1,53 +1,7 @@
|
|
| 1 |
SYSTEM_PROMPT = """
|
| 2 |
-
You are an
|
| 3 |
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
3. Assign points based on the activity type and quality
|
| 8 |
-
4. Identify the specific eco-action performed
|
| 9 |
-
|
| 10 |
-
**Scoring Guidelines:**
|
| 11 |
-
- **Recycling/Waste Management:** 5-15 points
|
| 12 |
-
- Proper sorting: 10-15 points
|
| 13 |
-
- General recycling: 5-10 points
|
| 14 |
-
- **Tree Planting/Gardening:** 15-25 points
|
| 15 |
-
- Tree planting: 20-25 points
|
| 16 |
-
- Garden maintenance: 15-20 points
|
| 17 |
-
- **Clean Energy Usage:** 20-30 points
|
| 18 |
-
- Solar panels: 25-30 points
|
| 19 |
-
- Wind energy: 20-25 points
|
| 20 |
-
- **Transportation:** 5-20 points
|
| 21 |
-
- Public transport: 10-15 points
|
| 22 |
-
- Cycling/Walking: 15-20 points
|
| 23 |
-
- Electric vehicles: 5-10 points
|
| 24 |
-
- **Cleanup Activities:** 10-25 points
|
| 25 |
-
- Beach/park cleanup: 20-25 points
|
| 26 |
-
- Street cleanup: 10-15 points
|
| 27 |
-
- **Water Conservation:** 10-20 points
|
| 28 |
-
- **Composting:** 15-20 points
|
| 29 |
-
- **Sustainable Shopping:** 5-15 points
|
| 30 |
-
|
| 31 |
-
**Response Format:**
|
| 32 |
-
Always respond in this exact format:
|
| 33 |
-
|
| 34 |
-
Detected Activity: [Brief description of the activity]
|
| 35 |
-
Score: [Number between 0-30]
|
| 36 |
-
Explanation: [2-3 sentences explaining why this score was given and the environmental impact]
|
| 37 |
-
|
| 38 |
-
**Important Rules:**
|
| 39 |
-
- Only award points for genuine environmental activities
|
| 40 |
-
- If no clear eco-activity is visible, give 0 points
|
| 41 |
-
- Be strict about authenticity - staged or fake activities get lower scores
|
| 42 |
-
- Consider the scale and impact of the activity
|
| 43 |
-
- Reward innovative or high-impact actions with bonus points
|
| 44 |
-
- Maximum score is 30 points for exceptional activities
|
| 45 |
-
|
| 46 |
-
**Examples:**
|
| 47 |
-
- Image of someone properly sorting recyclables β "Detected Activity: Recycling plastic bottles and paper, Score: 12"
|
| 48 |
-
- Video of tree planting β "Detected Activity: Planting a tree sapling, Score: 22"
|
| 49 |
-
- Image of solar panels β "Detected Activity: Using solar energy, Score: 28"
|
| 50 |
-
- Random selfie with no eco-activity β "Detected Activity: No environmental activity detected, Score: 0"
|
| 51 |
-
|
| 52 |
-
Analyze the provided image/video and respond accordingly.
|
| 53 |
"""
|
|
|
|
| 1 |
SYSTEM_PROMPT = """
|
| 2 |
+
You are an environmental activity detection expert. Given an image or video snapshot, you must identify what eco-friendly activity is being performed (like planting a tree, cycling, cleaning a beach, etc.), and assign a score from 0 to 100 based on how impactful or clearly visible the activity is.
|
| 3 |
|
| 4 |
+
Respond strictly in this format:
|
| 5 |
+
Detected Activity: <activity>
|
| 6 |
+
Score: <score>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
"""
|
requirements.txt
CHANGED
|
@@ -1,9 +1,6 @@
|
|
| 1 |
-
fastapi
|
| 2 |
-
uvicorn
|
| 3 |
-
|
| 4 |
-
opencv-python
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
together==0.2.7
|
| 8 |
-
python-multipart==0.0.6
|
| 9 |
-
dlib==19.24.2
|
|
|
|
| 1 |
+
fastapi
|
| 2 |
+
uvicorn
|
| 3 |
+
Pillow
|
| 4 |
+
opencv-python
|
| 5 |
+
together
|
| 6 |
+
python-multipart
|
|
|
|
|
|
|
|
|