Spaces:
Runtime error
Runtime error
| from typing import List, TextIO, Dict, Optional | |
| import torch | |
| from torch.utils.data import IterableDataset | |
| from torch.utils.data.dataset import T_co | |
| def blocks(files, size=65536): | |
| while True: | |
| b = files.read(size) | |
| if not b: | |
| break | |
| yield b | |
| def count_lines(input_path: str) -> int: | |
| with open(input_path, "r", encoding="utf8") as f: | |
| return sum(bl.count("\n") for bl in blocks(f)) | |
| class DatasetReader(IterableDataset): | |
| def __init__(self, filename, tokenizer, max_length=128): | |
| self.filename = filename | |
| self.tokenizer = tokenizer | |
| self.max_length = max_length | |
| def preprocess(self, text: str): | |
| return self.tokenizer( | |
| text.rstrip().strip(), | |
| padding="max_length", | |
| truncation=True, | |
| max_length=self.max_length, | |
| return_tensors="pt", | |
| ) | |
| def __iter__(self): | |
| file_itr = open(self.filename, "r") | |
| mapped_itr = map(self.preprocess, file_itr) | |
| return mapped_itr | |
| def collate_function(batch: List[T_co]) -> Dict[str, torch.Tensor]: | |
| return { | |
| "input_ids": torch.stack([item["input_ids"][0] for item in batch]), | |
| "attention_mask": torch.stack([item["attention_mask"][0] for item in batch]), | |
| } | |
| def get_dataloader( | |
| filename: str, tokenizer: str, batch_size: int, max_length: int | |
| ) -> torch.utils.data.DataLoader: | |
| dataset = DatasetReader(filename, tokenizer, max_length) | |
| return torch.utils.data.DataLoader( | |
| dataset, | |
| batch_size=batch_size, | |
| collate_fn=collate_function, | |
| ) | |