jfang's picture
Upload 7 files
3718631 verified
"""
RAG Retrieval Utilities for gprMax Documentation
Provides search and retrieval functions for the vector database
"""
import logging
from pathlib import Path
from typing import List, Dict, Any, Optional, Tuple
import json
import chromadb
from dataclasses import dataclass
logger = logging.getLogger(__name__)
@dataclass
class SearchResult:
"""Container for search results"""
text: str
score: float
metadata: Dict[str, Any]
def __str__(self) -> str:
return f"[Score: {self.score:.3f}] {self.metadata.get('source', 'Unknown')}: {self.text[:100]}..."
# Removed QwenEmbeddingModel class - using ChromaDB's default embedding
class GprMaxRAGRetriever:
"""Retriever for gprMax documentation RAG database"""
def __init__(self, db_path: Path = None):
if db_path is None:
db_path = Path(__file__).parent / "chroma_db"
if not db_path.exists():
raise ValueError(f"Database path {db_path} does not exist. Run generate_db.py first.")
self.db_path = db_path
# Load metadata
metadata_path = db_path / "metadata.json"
if metadata_path.exists():
with open(metadata_path, 'r') as f:
self.metadata = json.load(f)
else:
self.metadata = {}
# Initialize ChromaDB client
self.client = chromadb.PersistentClient(path=str(db_path))
# Get collection
self.collection_name = self.metadata.get("collection_name", "gprmax_docs_v1")
try:
print(f"[RAG] Loading collection: {self.collection_name}")
self.collection = self.client.get_collection(self.collection_name)
doc_count = self.collection.count()
print(f"[RAG] Loaded collection: {self.collection_name} with {doc_count} documents")
logger.info(f"Loaded collection: {self.collection_name} with {doc_count} documents")
except Exception as e:
print(f"[RAG] ERROR loading collection: {e}")
raise ValueError(f"Failed to load collection {self.collection_name}: {e}")
def search(
self,
query: str,
k: int = 10,
threshold: float = 0.0,
filter_metadata: Optional[Dict[str, Any]] = None
) -> List[SearchResult]:
"""
Search for relevant documents
Args:
query: Search query text
k: Number of results to return
threshold: Minimum similarity score threshold
filter_metadata: Optional metadata filters
Returns:
List of SearchResult objects
"""
# Search in ChromaDB (it will generate embeddings automatically)
try:
results = self.collection.query(
query_texts=[query], # Use query_texts instead of query_embeddings
n_results=k,
where=filter_metadata if filter_metadata else None,
include=["documents", "metadatas", "distances"]
)
logger.info(f"ChromaDB query returned: {len(results.get('documents', [[]])[0]) if results.get('documents') else 0} results")
except Exception as e:
logger.error(f"ChromaDB query failed: {e}")
raise
# Convert to SearchResult objects
search_results = []
if results["documents"] and results["documents"][0]:
for doc, meta, dist in zip(
results["documents"][0],
results["metadatas"][0],
results["distances"][0]
):
# Convert distance to similarity score (1 - normalized_distance)
score = 1.0 - (dist / 2.0) # Assuming cosine distance in [-1, 1]
if score >= threshold:
search_results.append(SearchResult(
text=doc,
score=score,
metadata=meta
))
return search_results
def get_context(
self,
query: str,
k: int = 3,
max_context_length: int = 2000,
format_as_markdown: bool = True
) -> str:
"""
Get formatted context for a query
Args:
query: Search query
k: Number of documents to retrieve
max_context_length: Maximum total context length
format_as_markdown: Format output as markdown
Returns:
Formatted context string
"""
results = self.search(query, k=k)
if not results:
return "No relevant documentation found."
context_parts = []
total_length = 0
for i, result in enumerate(results, 1):
if total_length >= max_context_length:
break
# Truncate if needed
text = result.text
if total_length + len(text) > max_context_length:
text = text[:max_context_length - total_length]
if format_as_markdown:
source = result.metadata.get("source", "Unknown")
context_parts.append(
f"### Document {i} (Source: {source}, Score: {result.score:.3f})\n"
f"```\n{text}\n```\n"
)
else:
context_parts.append(text)
total_length += len(text)
return "\n".join(context_parts)
def get_relevant_files(self, query: str, k: int = 5) -> List[str]:
"""Get list of relevant source files for a query"""
results = self.search(query, k=k)
# Extract unique source files
sources = set()
for result in results:
source = result.metadata.get("source")
if source:
sources.add(source)
return sorted(list(sources))
def search_by_file(self, file_pattern: str, k: int = 10) -> List[SearchResult]:
"""Search for documents from specific files"""
# This would need ChromaDB's where clause with pattern matching
# For now, we do a broad search and filter
results = self.collection.get(
limit=1000, # Get many results
include=["documents", "metadatas"]
)
filtered_results = []
if results["documents"]:
for doc, meta in zip(results["documents"], results["metadatas"]):
source = meta.get("source", "")
if file_pattern.lower() in source.lower():
filtered_results.append(SearchResult(
text=doc,
score=1.0, # No score for direct retrieval
metadata=meta
))
if len(filtered_results) >= k:
break
return filtered_results
def get_stats(self) -> Dict[str, Any]:
"""Get database statistics"""
stats = {
"total_documents": self.collection.count(),
"database_path": str(self.db_path),
"collection_name": self.collection_name,
"embedding_model": self.metadata.get("embedding_model", "Unknown"),
"created_at": self.metadata.get("created_at", "Unknown"),
"chunk_size": self.metadata.get("chunk_size", "Unknown"),
"chunk_overlap": self.metadata.get("chunk_overlap", "Unknown")
}
return stats
def create_retriever(db_path: Optional[Path] = None) -> GprMaxRAGRetriever:
"""Factory function to create a retriever instance"""
return GprMaxRAGRetriever(db_path=db_path)
if __name__ == "__main__":
# Example usage
import sys
if len(sys.argv) > 1:
query = " ".join(sys.argv[1:])
else:
query = "How to create a source in gprMax?"
print(f"Testing retriever with query: '{query}'")
print("-" * 80)
try:
retriever = create_retriever()
# Get stats
stats = retriever.get_stats()
print(f"Database stats: {stats}")
print("-" * 80)
# Search
results = retriever.search(query, k=3)
print(f"Found {len(results)} results:")
for i, result in enumerate(results, 1):
print(f"\n{i}. {result}")
# Get formatted context
print("\n" + "=" * 80)
print("Formatted context:")
print(retriever.get_context(query, k=3))
except Exception as e:
print(f"Error: {e}")
sys.exit(1)