Spaces:
Running
Running
jhj0517
commited on
Commit
·
22a07bc
1
Parent(s):
b065a65
refactor docstring
Browse files
modules/faster_whisper_inference.py
CHANGED
|
@@ -32,7 +32,7 @@ class FasterWhisperInference(BaseInterface):
|
|
| 32 |
self.default_beam_size = 1
|
| 33 |
|
| 34 |
def transcribe_file(self,
|
| 35 |
-
|
| 36 |
file_format: str,
|
| 37 |
add_timestamp: bool,
|
| 38 |
progress=gr.Progress(),
|
|
@@ -43,7 +43,7 @@ class FasterWhisperInference(BaseInterface):
|
|
| 43 |
|
| 44 |
Parameters
|
| 45 |
----------
|
| 46 |
-
|
| 47 |
List of files to transcribe from gr.Files()
|
| 48 |
file_format: str
|
| 49 |
Subtitle File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
|
|
@@ -56,20 +56,21 @@ class FasterWhisperInference(BaseInterface):
|
|
| 56 |
|
| 57 |
Returns
|
| 58 |
----------
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
|
|
|
| 62 |
"""
|
| 63 |
try:
|
| 64 |
files_info = {}
|
| 65 |
-
for
|
| 66 |
transcribed_segments, time_for_task = self.transcribe(
|
| 67 |
-
|
| 68 |
progress,
|
| 69 |
*whisper_params,
|
| 70 |
)
|
| 71 |
|
| 72 |
-
file_name, file_ext = os.path.splitext(os.path.basename(
|
| 73 |
file_name = safe_filename(file_name)
|
| 74 |
subtitle, file_path = self.generate_and_write_file(
|
| 75 |
file_name=file_name,
|
|
@@ -96,8 +97,8 @@ class FasterWhisperInference(BaseInterface):
|
|
| 96 |
print(f"Error transcribing file on line {e}")
|
| 97 |
finally:
|
| 98 |
self.release_cuda_memory()
|
| 99 |
-
if not
|
| 100 |
-
self.remove_input_files([
|
| 101 |
|
| 102 |
def transcribe_youtube(self,
|
| 103 |
youtube_link: str,
|
|
@@ -124,9 +125,10 @@ class FasterWhisperInference(BaseInterface):
|
|
| 124 |
|
| 125 |
Returns
|
| 126 |
----------
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
|
|
|
| 130 |
"""
|
| 131 |
try:
|
| 132 |
progress(0, desc="Loading Audio from Youtube..")
|
|
@@ -142,15 +144,15 @@ class FasterWhisperInference(BaseInterface):
|
|
| 142 |
progress(1, desc="Completed!")
|
| 143 |
|
| 144 |
file_name = safe_filename(yt.title)
|
| 145 |
-
subtitle,
|
| 146 |
file_name=file_name,
|
| 147 |
transcribed_segments=transcribed_segments,
|
| 148 |
add_timestamp=add_timestamp,
|
| 149 |
file_format=file_format
|
| 150 |
)
|
| 151 |
-
|
| 152 |
|
| 153 |
-
return [
|
| 154 |
|
| 155 |
except Exception as e:
|
| 156 |
print(f"Error transcribing file on line {e}")
|
|
@@ -189,9 +191,10 @@ class FasterWhisperInference(BaseInterface):
|
|
| 189 |
|
| 190 |
Returns
|
| 191 |
----------
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
|
|
|
| 195 |
"""
|
| 196 |
try:
|
| 197 |
progress(0, desc="Loading Audio..")
|
|
@@ -202,15 +205,15 @@ class FasterWhisperInference(BaseInterface):
|
|
| 202 |
)
|
| 203 |
progress(1, desc="Completed!")
|
| 204 |
|
| 205 |
-
subtitle,
|
| 206 |
file_name="Mic",
|
| 207 |
transcribed_segments=transcribed_segments,
|
| 208 |
add_timestamp=True,
|
| 209 |
file_format=file_format
|
| 210 |
)
|
| 211 |
|
| 212 |
-
|
| 213 |
-
return [
|
| 214 |
except Exception as e:
|
| 215 |
print(f"Error transcribing file on line {e}")
|
| 216 |
finally:
|
|
@@ -282,7 +285,17 @@ class FasterWhisperInference(BaseInterface):
|
|
| 282 |
progress: gr.Progress
|
| 283 |
):
|
| 284 |
"""
|
| 285 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 286 |
"""
|
| 287 |
progress(0, desc="Initializing Model..")
|
| 288 |
self.current_model_size = model_size
|
|
@@ -301,7 +314,26 @@ class FasterWhisperInference(BaseInterface):
|
|
| 301 |
file_format: str,
|
| 302 |
) -> str:
|
| 303 |
"""
|
| 304 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 305 |
"""
|
| 306 |
timestamp = datetime.now().strftime("%m%d%H%M%S")
|
| 307 |
if add_timestamp:
|
|
@@ -327,6 +359,18 @@ class FasterWhisperInference(BaseInterface):
|
|
| 327 |
|
| 328 |
@staticmethod
|
| 329 |
def format_time(elapsed_time: float) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 330 |
hours, rem = divmod(elapsed_time, 3600)
|
| 331 |
minutes, seconds = divmod(rem, 60)
|
| 332 |
|
|
|
|
| 32 |
self.default_beam_size = 1
|
| 33 |
|
| 34 |
def transcribe_file(self,
|
| 35 |
+
files: list,
|
| 36 |
file_format: str,
|
| 37 |
add_timestamp: bool,
|
| 38 |
progress=gr.Progress(),
|
|
|
|
| 43 |
|
| 44 |
Parameters
|
| 45 |
----------
|
| 46 |
+
files: list
|
| 47 |
List of files to transcribe from gr.Files()
|
| 48 |
file_format: str
|
| 49 |
Subtitle File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
|
|
|
|
| 56 |
|
| 57 |
Returns
|
| 58 |
----------
|
| 59 |
+
result_str:
|
| 60 |
+
Result of transcription to return to gr.Textbox()
|
| 61 |
+
result_file_path:
|
| 62 |
+
Output file path to return to gr.Files()
|
| 63 |
"""
|
| 64 |
try:
|
| 65 |
files_info = {}
|
| 66 |
+
for file in files:
|
| 67 |
transcribed_segments, time_for_task = self.transcribe(
|
| 68 |
+
file.name,
|
| 69 |
progress,
|
| 70 |
*whisper_params,
|
| 71 |
)
|
| 72 |
|
| 73 |
+
file_name, file_ext = os.path.splitext(os.path.basename(file.name))
|
| 74 |
file_name = safe_filename(file_name)
|
| 75 |
subtitle, file_path = self.generate_and_write_file(
|
| 76 |
file_name=file_name,
|
|
|
|
| 97 |
print(f"Error transcribing file on line {e}")
|
| 98 |
finally:
|
| 99 |
self.release_cuda_memory()
|
| 100 |
+
if not files:
|
| 101 |
+
self.remove_input_files([file.name for file in files])
|
| 102 |
|
| 103 |
def transcribe_youtube(self,
|
| 104 |
youtube_link: str,
|
|
|
|
| 125 |
|
| 126 |
Returns
|
| 127 |
----------
|
| 128 |
+
result_str:
|
| 129 |
+
Result of transcription to return to gr.Textbox()
|
| 130 |
+
result_file_path:
|
| 131 |
+
Output file path to return to gr.Files()
|
| 132 |
"""
|
| 133 |
try:
|
| 134 |
progress(0, desc="Loading Audio from Youtube..")
|
|
|
|
| 144 |
progress(1, desc="Completed!")
|
| 145 |
|
| 146 |
file_name = safe_filename(yt.title)
|
| 147 |
+
subtitle, result_file_path = self.generate_and_write_file(
|
| 148 |
file_name=file_name,
|
| 149 |
transcribed_segments=transcribed_segments,
|
| 150 |
add_timestamp=add_timestamp,
|
| 151 |
file_format=file_format
|
| 152 |
)
|
| 153 |
+
result_str = f"Done in {self.format_time(time_for_task)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
|
| 154 |
|
| 155 |
+
return [result_str, result_file_path]
|
| 156 |
|
| 157 |
except Exception as e:
|
| 158 |
print(f"Error transcribing file on line {e}")
|
|
|
|
| 191 |
|
| 192 |
Returns
|
| 193 |
----------
|
| 194 |
+
result_str:
|
| 195 |
+
Result of transcription to return to gr.Textbox()
|
| 196 |
+
result_file_path:
|
| 197 |
+
Output file path to return to gr.Files()
|
| 198 |
"""
|
| 199 |
try:
|
| 200 |
progress(0, desc="Loading Audio..")
|
|
|
|
| 205 |
)
|
| 206 |
progress(1, desc="Completed!")
|
| 207 |
|
| 208 |
+
subtitle, result_file_path = self.generate_and_write_file(
|
| 209 |
file_name="Mic",
|
| 210 |
transcribed_segments=transcribed_segments,
|
| 211 |
add_timestamp=True,
|
| 212 |
file_format=file_format
|
| 213 |
)
|
| 214 |
|
| 215 |
+
result_str = f"Done in {self.format_time(time_for_task)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
|
| 216 |
+
return [result_str, result_file_path]
|
| 217 |
except Exception as e:
|
| 218 |
print(f"Error transcribing file on line {e}")
|
| 219 |
finally:
|
|
|
|
| 285 |
progress: gr.Progress
|
| 286 |
):
|
| 287 |
"""
|
| 288 |
+
Update current model setting
|
| 289 |
+
|
| 290 |
+
Parameters
|
| 291 |
+
----------
|
| 292 |
+
model_size: str
|
| 293 |
+
Size of whisper model
|
| 294 |
+
compute_type: str
|
| 295 |
+
Compute type for transcription.
|
| 296 |
+
see more info : https://opennmt.net/CTranslate2/quantization.html
|
| 297 |
+
progress: gr.Progress
|
| 298 |
+
Indicator to show progress directly in gradio.
|
| 299 |
"""
|
| 300 |
progress(0, desc="Initializing Model..")
|
| 301 |
self.current_model_size = model_size
|
|
|
|
| 314 |
file_format: str,
|
| 315 |
) -> str:
|
| 316 |
"""
|
| 317 |
+
Writes subtitle file and returns str of content and output file path
|
| 318 |
+
|
| 319 |
+
Parameters
|
| 320 |
+
----------
|
| 321 |
+
file_name: str
|
| 322 |
+
Size of whisper model
|
| 323 |
+
transcribed_segments: str
|
| 324 |
+
Compute type for transcription.
|
| 325 |
+
see more info : https://opennmt.net/CTranslate2/quantization.html
|
| 326 |
+
add_timestamp: bool
|
| 327 |
+
Determines whether to add a timestamp to the end of the filename.
|
| 328 |
+
file_format: str
|
| 329 |
+
File format to write. Supported formats: [SRT, WebVTT, txt]
|
| 330 |
+
|
| 331 |
+
Returns
|
| 332 |
+
----------
|
| 333 |
+
content: str
|
| 334 |
+
Result of the transcription
|
| 335 |
+
output_path: str
|
| 336 |
+
output file path
|
| 337 |
"""
|
| 338 |
timestamp = datetime.now().strftime("%m%d%H%M%S")
|
| 339 |
if add_timestamp:
|
|
|
|
| 359 |
|
| 360 |
@staticmethod
|
| 361 |
def format_time(elapsed_time: float) -> str:
|
| 362 |
+
"""
|
| 363 |
+
Get {hours} {minutes} {seconds} time format string
|
| 364 |
+
|
| 365 |
+
Parameters
|
| 366 |
+
----------
|
| 367 |
+
elapsed_time: str
|
| 368 |
+
Elapsed time for transcription
|
| 369 |
+
|
| 370 |
+
Returns
|
| 371 |
+
----------
|
| 372 |
+
Time format string
|
| 373 |
+
"""
|
| 374 |
hours, rem = divmod(elapsed_time, 3600)
|
| 375 |
minutes, seconds = divmod(rem, 60)
|
| 376 |
|