FlyKiteAirlines / app.py
jpkarthikeyan's picture
Upload folder using huggingface_hub
adebd02 verified
import os
import sys
import json
import streamlit as st
import warnings
import traceback
import logs
import chromadb
import hashlib
import sqlite3
import regex as re
from pinecone import Pinecone
from typing import Optional, Dict, Any
from sentence_transformers import util
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
warnings.filterwarnings("ignore")
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), 'src')))
from sentence_transformers import SentenceTransformer
from configuration import Configuration
from rag_scripts.rag_pipeline import RAGPipeline
from rag_scripts.documents_processing.chunking import PyMuPDFChunker
from rag_scripts.embedding.embedder import SentenceTransformerEmbedder
from rag_scripts.embedding.vector_db.chroma_db import chromaDBVectorDB
from rag_scripts.embedding.vector_db.faiss_db import FAISSVectorDB
from rag_scripts.embedding.vector_db.pinecone_db import PineconeVectorDB
from rag_scripts.llm.llmResponse import GROQLLM
from rag_scripts.evaluation.evaluator import RAGEvaluator
class RAGOperations:
VALID_VECTOR_DB = {'chroma', 'faiss', 'pinecone'}
@staticmethod
def check_db(vector_db_type: str, db_path: str, collection_name: str) -> bool:
try:
if vector_db_type not in RAGOperations.VALID_VECTOR_DB:
logs.logger.info(f"Invalid Vector DB: {vector_db_type}")
raise
if vector_db_type.lower() == 'pinecone':
pc = Pinecone(api_key=Configuration.PINECONE_API_KEY)
return collection_name in pc.list_indexes().names()
elif vector_db_type.lower() == 'chroma':
if not os.path.exists(db_path):
return False
client = chromadb.PersistentClient(path=db_path)
try:
client.get_collection(collection_name)
return True
except:
return False
elif vector_db_type.lower() == "faiss":
faiss_index_file = os.path.join(db_path, f"{collection_name}.faiss")
faiss_doc_store_file = os.path.join(db_path, f"{collection_name}_docs.pkl")
return os.path.exists(faiss_index_file) and os.path.exists(faiss_doc_store_file)
except Exception as ex:
traceback.print_exc()
logs.logger.info(f"Exception in checking {vector_db_type} existence")
return False
@staticmethod
def get_pipeline_params(chunk_size: Optional[int] =None,
chunk_overlap: Optional[int]=None,
embedding_model: Optional[str]=None,
vector_db_type: Optional[str]=None,
llm_model: Optional[str] = None,
temperature: Optional[float] = None,
top_p: Optional[float] = None,
max_tokens: Optional[int] = None,
re_ranker_model: Optional[str] = None,
use_tuned: bool = False) -> Dict[str, Any]:
try:
best_param_path = os.path.join(Configuration.DATA_DIR, 'best_params.json')
params = {
'document_path': Configuration.FULL_PDF_PATH,
'chunk_size': chunk_size if chunk_size is not None else Configuration.DEFAULT_CHUNK_SIZE,
'chunk_overlap': chunk_overlap if chunk_overlap is not None else Configuration.DEFAULT_CHUNK_OVERLAP,
'embedding_model_name': embedding_model if embedding_model is not None else Configuration.DEFAULT_SENTENCE_TRANSFORMER_MODEL,
'vector_db_type': vector_db_type if vector_db_type is not None else "chroma",
'llm_model_name': llm_model if llm_model is not None else llm_model,
'db_path': None,
'collection_name': Configuration.COLLECTION_NAME,
'vector_db': None,
'temperature': temperature if temperature is not None else 0.1,
'top_p': top_p if top_p is not None else .95,
'max_tokens': max_tokens if max_tokens is not None else 1500,
're_ranker_model': re_ranker_model if re_ranker_model is not None else Configuration.DEFAULT_RERANKER,
}
if use_tuned and os.path.exists(best_param_path):
with open(best_param_path, 'rb') as f:
best_params = json.load(f)
logs.logger.info(f"Best params: {best_params} from the file {best_param_path}")
params.update({
'vector_db_type': best_params.get('vector_db_type', params['vector_db_type']),
'embedding_model_name': best_params.get('embedding_model', params['embedding_model_name']),
'chunk_overlap': best_params.get('chunk_overlap', params['chunk_overlap']),
'chunk_size': best_params.get('chunk_size', params['chunk_size']),
're_ranker_model': best_params.get('re_ranker_model', params['re_ranker_model'])})
use_tuned = True
if use_tuned:
tuned_db_type = params['vector_db_type']
params['db_path'] = os.path.join(Configuration.DATA_DIR, 'TunedDB',
tuned_db_type) if tuned_db_type != 'pinecone' else ""
params['collection_name'] = 'tuned-' + Configuration.COLLECTION_NAME
if tuned_db_type in ['chroma', 'faiss']:
os.makedirs(params['db_path'], exist_ok=True)
logs.logger.info(f"Tuned db path: {params['db_path']}")
else:
params['db_path'] = (Configuration.CHROMA_DB_PATH if params['vector_db_type'] == 'chroma'
else Configuration.FAISS_DB_PATH if params['vector_db_type'] == 'faiss'
else "")
if params['vector_db_type'] in ['chroma', 'faiss']:
os.makedirs(params['db_path'], exist_ok=True)
logs.logger.info(f"Created directory for {params['vector_db_type']} at {params['db_path']}")
return params
except Exception as ex:
logs.logger.info(f"Exception in get_pipeline_params: {ex}")
traceback.print_exc()
@staticmethod
def check_embedding_dimension(vector_db_type: str, db_path: str,
collection_name: str, embedding_model: str) -> bool:
if vector_db_type != 'chroma':
return True
try:
client = chromadb.PersistentClient(path=db_path)
collection = client.get_collection(collection_name)
model = SentenceTransformer(embedding_model)
sample_embedding = model.encode(["test"])[0]
try:
expected_dim = collection._embedding_function.dim
except AttributeError:
peek_result = collection.peek(limit=1)
if 'embedding' in peek_result and peek_result['embedding']:
expected_dim = len(peek_result['embedding'][0])
else:
return False
actual_dim = len(sample_embedding)
logs.logger.info(f"Expected dimension: {expected_dim} Actual dimension: {actual_dim}")
return expected_dim == actual_dim
except Exception as ex:
logs.logger.info(f"Error checking embedding dimension: {ex}")
return False
@staticmethod
def initialize_pipeline(params: dict[str, Any]) -> RAGPipeline:
try:
embedder = SentenceTransformerEmbedder(model_name=params['embedding_model_name'])
chunkerObj = PyMuPDFChunker(
pdf_path=params['document_path'],
chunk_size=params['chunk_size'],
chunk_overlap=params['chunk_overlap'])
llm_model = params['llm_model_name']
vector_db = None
if params['vector_db_type'] == 'chroma':
vector_db = chromaDBVectorDB(embedder=embedder,
db_path=params['db_path'],
collection_name=params['collection_name'])
elif params['vector_db_type'] == 'faiss':
vector_db = FAISSVectorDB(embedder=embedder,
db_path=params['db_path'],
collection_name=params['collection_name'])
elif params['vector_db_type'] == 'pinecone':
vector_db = PineconeVectorDB(embedder=embedder,
db_path=params['db_path'],
collection_name=params['collection_name'])
else:
raise ValueError(f"Unknown vector_db_type: {params['vector_db_type']}")
return RAGPipeline(document_path=params['document_path'],
chunker=chunkerObj, embedder=embedder,
vector_db=vector_db,
llm=GROQLLM(model_name=llm_model),
re_ranker_model_name=params['re_ranker_model'] if params[
're_ranker_model'] else Configuration.DEFAULT_RERANKER, )
except Exception as ex:
logs.logger.info(f"Exception in pipeline initialize: {ex}")
traceback.print_exc()
sys.exit(1)
@staticmethod
def run_build_job(chunk_size: Optional[int] = None,
chunk_overlap: Optional[int] = None,
embedding_model: Optional[str] = None,
vector_db_type: Optional[str]= None,
llm_model: Optional[str]= None,
temperature: Optional[float]= None,
top_p: Optional[float]= None,
max_tokens: Optional[int]= None,
re_ranker_model: Optional[str] =None,
use_tuned: bool = False) -> None:
try:
params = RAGOperations.get_pipeline_params(chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
embedding_model=embedding_model,
vector_db_type=vector_db_type,
llm_model=llm_model,
temperature=temperature,
top_p=top_p,
max_tokens=max_tokens,
re_ranker_model=re_ranker_model,
use_tuned=use_tuned)
pipeline = RAGOperations.initialize_pipeline(params)
pipeline.build_index()
logs.logger.info(f"RAG Build JOB completed")
except Exception as ex:
logs.logger.info(f"Exception in run build job: {ex}")
traceback.print_exc()
raise
@staticmethod
def run_search_job(query: Optional[str] = None,
k: int = 5, raw: bool = False,
use_tuned: bool = False,
llm_model: Optional[str]= None,
user_context: Optional[Dict[str,str]] = None,
temperature: Optional[float]= None,
top_p: Optional[float]= None,
max_tokens: Optional[int]= None,
chunk_size: Optional[int]= None,
chunk_overlap: Optional[int]= None,
embedding_model: Optional[str]= None,
vector_db_type: Optional[str]= None,
re_ranker_model: Optional[str]= None,
use_rag:bool = True) -> Dict[str, Any]:
try:
params = RAGOperations.get_pipeline_params(chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
embedding_model=embedding_model,
vector_db_type=vector_db_type,
llm_model=llm_model,
temperature=temperature,
top_p=top_p,
max_tokens=max_tokens,
re_ranker_model=re_ranker_model,
use_tuned=use_tuned)
vector_db_type = params['vector_db_type']
db_path = params['db_path']
collection_name = params['collection_name']
pipeline = RAGOperations.initialize_pipeline(params)
db_exists = RAGOperations.check_db(vector_db_type, db_path, collection_name)
if use_rag:
if not db_exists:
pipeline.build_index()
elif pipeline.vector_db.count_documents() == 0:
pipeline.build_index()
elif not RAGOperations.check_embedding_dimension(vector_db_type, db_path,
collection_name, params['embedding_model_name']):
logs.logger.info(f"Embedding dimension mismatch. rebuilding the index")
pipeline.vector_db.delete_collection(collection_name)
pipeline.build_index()
else:
logs.logger.info(f"Using existing {vector_db_type} database with collection: {collection_name}")
if pipeline.vector_db.count_documents() == 0:
logs.logger.info(f"No Documents found in vector database after re-build")
sys.exit(1)
evaluator = RAGEvaluator(eval_data_path=Configuration.EVAL_DATA_PATH,
pdf_path=Configuration.FULL_PDF_PATH)
user_query = query if query else (
input("Enter your Query: "))
if user_query.lower() == 'exit':
return
expected_answers = None
expected_keywords = []
query_found = False
try:
with open(Configuration.EVAL_DATA_PATH, 'r') as f:
eval_data = json.load(f)
for item in eval_data:
if item.get('query').strip().lower() == user_query.strip().lower():
expected_keywords = item.get('expected_keywords', [])
expected_answers = item.get('expected_answer_snippet', "")
query_found = True
break
if not expected_keywords and not expected_answers:
logs.logger.info(f"No evaluation data found for query in json")
except Exception as ex:
logs.logger.info(f"No json file : {ex}")
retrieved_documents = []
if raw:
retrieved_documents = pipeline.retrieve_raw_documents(
user_query, k=k * 2)
logs.logger.info("Raw documents retrieved")
logs.logger.info(json.dumps(retrieved_documents, indent=4))
if not retrieved_documents:
response = {"summary": "No relevant documents found",
"sources": []}
else:
query_embedding = evaluator.embedder.encode(user_query,
convert_to_tensor=True, normalize_embeddings=True)
similarities = [(doc, util.cos_sim(query_embedding,
evaluator.embedder.encode(doc['content'],
convert_to_tensor=True,
normalize_embeddings=True)).item())
for doc in retrieved_documents]
similarities.sort(key=lambda x: x[1], reverse=True)
top_docs = similarities[:min(3, len(similarities))]
truncated_content = []
for doc, sim in top_docs:
content_paragraphs = re.split(r'\n\s*\n', doc['content'].strip())
para_sims = [(para, util.cos_sim(query_embedding,
evaluator.embedder.encode(para.strip(), convert_to_tensor=True,
normalize_embeddings=True)).item())
for para in content_paragraphs if para.strip()]
para_sims.sort(key=lambda x: x[1], reverse=True)
top_paras = [para for para, para_sim in para_sims[:2] if para_sim >= 0.3]
if len(top_paras) < 1: # Fallback to at least one paragraph
top_paras = [para for para, _ in para_sims[:1]]
truncated_content.append('\n\n'.join(top_paras))
response = {
"summary": "\n".join(truncated_content),
"sources": [{"document_id": f"DOC {idx + 1}",
"page": str(doc['metadata'].get("page_number", "NA")),
"section": doc['metadata'].get("section", "NA"),
"clause": doc['metadata'].get("clause", "NA")}
for idx, (doc, _) in enumerate(top_docs)]}
else:
logs.logger.info("LLM+RAG")
response = pipeline.query(user_query, k=k,
include_metadata=True,
user_context=user_context
)
retrieved_documents = pipeline.retrieve_raw_documents(
user_query, k=k)
final_expected_answer = expected_answers if expected_answers is not None else ""
additional_eval_metrices = {}
if not query_found:
logs.logger.info(f"No query found in eval_Data.json: {user_query}")
raw_reference_for_score = evaluator._syntesize_raw_reference(retrieved_documents)
if not final_expected_answer.strip():
final_expected_answer = raw_reference_for_score
retrieved_documents_content = [doc.get('content', '') for doc in retrieved_documents]
llm_as_judge = evaluator._evaluate_with_llm(user_query,
response.get('summary', ''),
retrieved_documents_content)
if llm_as_judge:
additional_eval_metrices.update(llm_as_judge)
output = {"query": user_query, "response": response, "evaluation": llm_as_judge}
logs.logger.info(json.dumps(output, indent=4))
return output
else:
output = {"query": user_query, "response": response, "evaluation": llm_as_judge}
logs.logger.info(json.dumps(output, indent=4))
return output
else:
eval_result = evaluator.evaluate_response(user_query, response, retrieved_documents,
expected_keywords, expected_answers)
output = {"query": user_query, "response": response, "evaluation": eval_result}
logs.logger.info(json.dumps(output, indent=2, ensure_ascii=False))
return output
except Exception as ex:
logs.logger.info(f"Exception in run search job {ex}")
traceback.print_exc()
@staticmethod
def run_hypertune_job(llm_model: Optional[str] = None,
search_type: str = "random",
n_iter: int = 3) -> Dict[str,Any]:
try:
evaluator = RAGEvaluator(eval_data_path=Configuration.EVAL_DATA_PATH,
pdf_path=Configuration.FULL_PDF_PATH)
result = evaluator.evaluate_combined_params_grid(
chunk_size_to_test=[512, 1024, 2048],
chunk_overlap_to_test=[100, 200, 400],
embedding_models_to_test=["all-MiniLM-L6-v2",
"all-mpnet-base-v2",
"paraphrase-MiniLM-L3-v2",
"multi-qa-mpnet-base-dot-v1"],
vector_db_types_to_test=['pinecone'],
llm_model_name=llm_model,
re_ranker_model=["cross-encoder/ms-marco-MiniLM-L-6-v2",
"cross-encoder/ms-marco-TinyBERT-L-2"],
search_type=search_type,
n_iter=n_iter)
best_parameter = result['best_params']
best_score = result['best_score']
pkl_file = result['pkl_file']
best_metrics = result['best_metrics']
best_param_path = os.path.join(Configuration.DATA_DIR, 'best_params.json')
with open(best_param_path, 'w') as f:
json.dump(best_parameter, f, indent=4)
tuned_db = best_parameter['vector_db_type']
tuned_path = os.path.join(Configuration.DATA_DIR, 'TunedDB', tuned_db)
if tuned_db != 'pinecone':
os.makedirs(tuned_path, exist_ok=True)
tuned_collection_name = "tuned-" + Configuration.COLLECTION_NAME
tuned_params = {
'document_path': Configuration.FULL_PDF_PATH,
'chunk_size': best_parameter.get('chunk_size', Configuration.DEFAULT_CHUNK_SIZE),
'chunk_overlap': best_parameter.get('chunk_overlap', Configuration.DEFAULT_CHUNK_OVERLAP),
'embedding_model_name': best_parameter.get('embedding_model',
Configuration.DEFAULT_SENTENCE_TRANSFORMER_MODEL),
'vector_db_type': tuned_db,
'llm_model_name': llm_model,
'db_path': tuned_path if tuned_db != 'pinecone' else "",
'collection_name': tuned_collection_name,
'vector_db': None,
're_ranker_model': best_parameter.get('re_ranker', Configuration.DEFAULT_RERANKER)
}
if 're_ranker_model' in best_parameter:
tuned_params['re_ranker_model'] = best_parameter['re_ranker_model']
else:
tuned_params['re_ranker_model'] = Configuration.DEFAULT_RERANKER
tuned_pipeline = RAGOperations.initialize_pipeline(tuned_params)
tuned_pipeline.build_index()
return result
except Exception as ex:
logs.logger.info(f"Exception in hypertune: {ex} ")
traceback.print_exc()
@staticmethod
def run_llm_with_prompt(run_type: str,
temperature: float=0.1,
top_p: float=0.95,
max_tokens=1500) -> None:
try:
params = RAGOperations.get_pipeline_params()
pipeline = RAGOperations.initialize_pipeline(params)
evaluator = RAGEvaluator(eval_data_path=Configuration.EVAL_DATA_PATH,
pdf_path=Configuration.FULL_PDF_PATH)
system_message = (
"You are an expert assistant for Flykite Airlines HR Policy Queries."
"Provide concise, accurate and policy-specific answers based solely on the the provided context."
"Structured your response clearly, using bullet points, newlines if applicable. "
"If the context lacks information, state that clearly and speculation."
) if run_type == 'prompting' else None
user_query = input("Enter your query: ")
expected_answer = None
expected_keywords = []
try:
with open(Configuration.EVAL_DATA_PATH, 'r') as f:
eval_data = json.load(f)
for item in eval_data:
expected_answer = item.get('expected_answer_snippet', "")
expected_keywords = item.get('expected_keywords', [])
break
except Exception as ex:
logs.logger.info(f"Error loading eval_data.json for query {user_query}: {ex}")
if run_type == 'prompting':
prompt = (
f"You are an expert assistant for Flykite Airlines HR Policy Queries."
f"Answer the following question with a structured response, using bullet points or sections where applicable"
f"Base your answer solely on the query and avoid hallucination"
f"Question: \n {user_query} \n"
f"Answer: ")
else:
prompt = user_query
response = pipeline.llm.generate_response(
prompt=prompt,
system_message=system_message,
temperature=temperature,
top_p=top_p,
max_tokens=max_tokens
)
retreived_documents = []
eval_result = evaluator.evaluate_response(user_query,
response,
retreived_documents,
expected_keywords,
expected_answer)
output = {"query": user_query,
"response": {
"summary: ": response.strip(),
"source: ": ["LLM Response Not RAG loaded"]},
"evaluation": eval_result}
logs.logger.info(json.dumps(output, indent=2))
return output
except Exception as ex:
logs.logger.info(f"Exception in LLm_prompting response: {ex}")
traceback.print_exc()
return {"error": str(ex)}
@staticmethod
def login() -> Dict[str, str]:
username = input("Enter your username: ")
password = input("Enter your password: ")
hashed_password = hashlib.sha256(password.encode()).hexdigest()
try:
conn = sqlite3.connect('users.db')
cursor = conn.cursor()
cursor.execute(
"SELECT username,jobrole,department,location FROM users WHERE username = ? AND password = ?",
(username, hashed_password)
)
user = cursor.fetchone()
logs.logger.info(f"{user}")
conn.close()
if user:
return {"username": user[0], "role": user[1], "department": user[2], "location": user[3]}
else:
logs.logger.info("Invalid username or password")
sys.exit(1)
except sqlite3.Error as ex:
return False
@staticmethod
def authenticate_user(username, password) -> Optional[Dict[str, str]]:
hashed_password = hashlib.sha256(password.encode()).hexdigest()
conn = sqlite3.connect('users.db')
cursor = conn.cursor()
cursor.execute(
"SELECT username, jobrole, department, location FROM users WHERE username = ? AND password = ?",
(username, hashed_password)
)
user = cursor.fetchone()
conn.close()
if user:
return {"username": user[0], "role": user[1], "department": user[2], "location": user[3]}
return None
@staticmethod
def home_page():
st.title("Welcome to Flykite RAG System")
if 'logged_in' not in st.session_state:
st.session_state.logged_in = False
if 'user_info' not in st.session_state:
st.session_state.user_info = None
if not st.session_state.logged_in:
st.subheader("Login")
with st.form("login_form"):
username = st.text_input("Username")
password = st.text_input("Password", type="password")
login_button = st.form_submit_button("Login")
if login_button:
user_data = RAGOperations.authenticate_user(username, password)
if user_data:
st.session_state.logged_in = True
st.session_state.user_info = user_data
st.session_state.user_context = {
"role": user_data['role'],
"department": user_data['department'],
"location": user_data['location']
}
st.success(f"Logged in as {user_data['username']} ({user_data['role']})")
# No rerun needed here, the main_app will handle navigation
st.session_state.page = "User" if user_data['role'] != 'admin' else "Admin"
st.rerun()
else:
st.error("Invalid username or password.")
else:
st.write(
f"You are logged in as **{st.session_state.user_info['username']}** (Role: **{st.session_state.user_info['role']}**)")
if st.button("Logout"):
st.session_state.logged_in = False
st.session_state.user_info = None
st.session_state.user_context = None
st.session_state.page = "Home" # Redirect to home on logout
st.rerun()
@staticmethod
@staticmethod
def admin_page():
st.title("Admin Dashboard")
st.write(f"Logged in as: {st.session_state.user_info['username']} (Role: {st.session_state.user_info['role']})")
if st.session_state.user_info and st.session_state.user_info['role'] == 'admin':
st.header("RAG Hypertuning")
st.info("Run hyperparameter tuning to find the best RAG configuration and build a tuned index.")
with st.form("hypertune_form"):
st.write("Hypertuning parameters:")
llm_model_ht = st.selectbox("LLM Model for Hypertuning Evaluation",
options=["llama-3.3-70b-versatile", "llama-3.1-8b-instant"],
index=["llama-3.3-70b-versatile", "llama-3.1-8b-instant"].index(
Configuration.DEFAULT_GROQ_LLM_MODEL) if Configuration.DEFAULT_GROQ_LLM_MODEL in [
"llama-3.3-70b-versatile", "llama-3.1-8b-instant"] else 0,
key="llm_model_ht_select")
# New inputs for hyperparameter tuning
st.subheader("Hyperparameter Ranges/Options:")
chunk_sizes = st.multiselect("Chunk Sizes to Test (e.g., 256, 512, 1024)",
options=[512, 1024,2048],
default=[512],
key="chunk_sizes_ht")
chunk_overlaps = st.multiselect("Chunk Overlaps to Test (e.g., 50, 100, 200)",
options=[150,200,400],
default=[150],
key="chunk_overlaps_ht")
embedding_models = st.multiselect("Embedding Models to Test",
options=["all-MiniLM-L6-v2", "all-mpnet-base-v2",
"paraphrase-MiniLM-L3-v2", "multi-qa-mpnet-base-dot-v1"],
default=["all-MiniLM-L6-v2", "all-mpnet-base-v2"],
key="embedding_models_ht")
re_ranker_models = st.multiselect("Re-ranker Models to Test",
options=["cross-encoder/ms-marco-MiniLM-L-6-v2",
"cross-encoder/ms-marco-TinyBERT-L-2", "None"],
default=["cross-encoder/ms-marco-MiniLM-L-6-v2"],
key="re_ranker_models_ht")
vector_db_types = st.multiselect("Vector DB Types to Test",
options=['chroma', 'faiss', 'pinecone'],
default=['chroma'],
key="vector_db_types_ht")
search_type = st.radio("Hypertuning Search Type",
options=["random", "grid"],
index=0, # Default to random
key="search_type_ht")
n_iter = st.number_input("Number of Hyper-tuning Iterations (for Random Search)",
min_value=1, value=3, step=1,
help="Only applicable for 'Random' search type.",
key="n_iter_ht")
hypertune_button = st.form_submit_button("Run Hypertune Job")
if hypertune_button:
if not chunk_sizes or not chunk_overlaps or not embedding_models or not re_ranker_models or not vector_db_types:
st.error("Please select at least one option for all hyperparameter categories.")
else:
# Handle 'None' for re-ranker model: remove "None" string and pass None object if needed
final_re_ranker_models = [
None if model == "None" else model for model in re_ranker_models
]
st.write("Starting RAG Hypertuning. This may take a while...")
with st.spinner("Running hypertuning..."):
try:
result = RAGOperations.run_hypertune_job(
llm_model=llm_model_ht,
chunk_size_to_test=chunk_sizes,
chunk_overlap_to_test=chunk_overlaps,
embedding_models_to_test=embedding_models,
re_ranker_model=final_re_ranker_models,
vector_db_types_to_test=vector_db_types,
search_type=search_type,
n_iter=n_iter if search_type == "random" else None # n_iter only for random search
)
if result and "error" not in result:
st.success("Hypertuning completed and tuned index built!")
st.subheader("Best Parameters Found:")
st.json(result.get('best_params', {}))
if 'best_score' in result:
st.write(f"Best Score: {result['best_score']:.4f}")
if 'best_metrics' in result:
st.subheader("Best Metrics:")
st.json(result['best_metrics'])
else:
st.error(f"Hypertuning failed: {result.get('error', 'Unknown error')}")
except Exception as e:
st.error(f"An unexpected error occurred during hypertuning: {e}")
st.exception(e) # Display full traceback in Streamlit
st.header("RAG Testing")
st.info("Test the RAG pipeline with a specific query, optionally using the tuned database.")
with st.form("rag_test_form"):
test_query = st.text_area("Enter a test query for the RAG system:",
value="What is the policy on annual leave?",
key="test_query_input")
use_tuned_db = st.checkbox("Use Tuned RAG Database (if hypertuned previously)", value=True,
key="use_tuned_db_checkbox")
display_raw = st.checkbox("Display Raw Retrieved Documents only (no LLM)",
key="display_raw_docs_checkbox")
k_value = st.slider("Number of documents to retrieve (k)", min_value=1, max_value=10, value=5,
key="k_value_slider")
test_rag_button = st.form_submit_button("Run RAG Test Query")
if test_rag_button:
st.write("Running RAG test query...")
with st.spinner("Getting RAG response..."):
try:
result = RAGOperations.run_search_job(
query=test_query,
k=k_value,
raw=display_raw,
use_tuned=use_tuned_db,
llm_model=st.session_state.get('llm_model_ht_select',
Configuration.DEFAULT_GROQ_LLM_MODEL),
user_context=st.session_state.user_context
)
if result and "error" not in result:
st.success("RAG Test Query Completed!")
st.subheader("RAG Response:")
if display_raw:
st.json(result.get('response', {}))
else:
response_data = result.get('response', {})
if 'summary' in response_data:
st.write(response_data['summary'])
if 'sources' in response_data and response_data['sources']:
st.subheader("Sources:")
for source in response_data['sources']:
if isinstance(source, dict):
st.markdown(
f"- **Document ID:** {source.get('document_id', 'N/A')}, **Page:** {source.get('page', 'N/A')}, **Section:** {source.get('section', 'N/A')}, **Clause:** {source.get('clause', 'N/A')}")
else:
st.markdown(f"- {source}")
else:
st.json(response_data)
if 'evaluation' in result:
st.subheader("Evaluation Results:")
st.json(result['evaluation'])
else:
st.error(f"RAG test query failed: {result.get('error', 'Unknown error')}")
except Exception as e:
st.error(f"An unexpected error occurred during RAG test: {e}")
st.exception(e)
else:
st.warning("You do not have administrative privileges to view this page.")
if st.button("Go to User Page"):
st.session_state.page = "User"
st.rerun()
@staticmethod
def run_hypertune_job(llm_model: Optional[str] = None,
chunk_size_to_test: Optional[list[int]] = None, # Added parameter
chunk_overlap_to_test: Optional[list[int]] = None, # Added parameter
embedding_models_to_test: Optional[list[str]] = None, # Added parameter
vector_db_types_to_test: Optional[list[str]] = None, # Added parameter
re_ranker_model: Optional[list[str]] = None, # Added parameter
search_type: str = "random",
n_iter: Optional[int] = 3) -> Dict[str, Any]:
try:
evaluator = RAGEvaluator(eval_data_path=Configuration.EVAL_DATA_PATH,
pdf_path=Configuration.FULL_PDF_PATH)
result = evaluator.evaluate_combined_params_grid(
chunk_size_to_test=chunk_size_to_test if chunk_size_to_test is not None else [512, 1024, 2048],
chunk_overlap_to_test=chunk_overlap_to_test if chunk_overlap_to_test is not None else [100, 200, 400],
embedding_models_to_test=embedding_models_to_test if embedding_models_to_test is not None else [
"all-MiniLM-L6-v2",
"all-mpnet-base-v2",
"paraphrase-MiniLM-L3-v2",
"multi-qa-mpnet-base-dot-v1"],
vector_db_types_to_test=vector_db_types_to_test if vector_db_types_to_test is not None else ['chroma'],
llm_model_name=llm_model,
re_ranker_model=re_ranker_model if re_ranker_model is not None else [
"cross-encoder/ms-marco-MiniLM-L-6-v2",
"cross-encoder/ms-marco-TinyBERT-L-2"],
search_type=search_type,
n_iter=n_iter)
best_parameter = result['best_params']
best_score = result['best_score']
pkl_file = result['pkl_file']
best_metrics = result['best_metrics']
best_param_path = os.path.join(Configuration.DATA_DIR, 'best_params.json')
with open(best_param_path, 'w') as f:
json.dump(best_parameter, f, indent=4)
tuned_db = best_parameter['vector_db_type']
tuned_path = os.path.join(Configuration.DATA_DIR, 'TunedDB', tuned_db)
if tuned_db != 'pinecone':
os.makedirs(tuned_path, exist_ok=True)
tuned_collection_name = "tuned-" + Configuration.COLLECTION_NAME
tuned_params = {
'document_path': Configuration.FULL_PDF_PATH,
'chunk_size': best_parameter.get('chunk_size', Configuration.DEFAULT_CHUNK_SIZE),
'chunk_overlap': best_parameter.get('chunk_overlap', Configuration.DEFAULT_CHUNK_OVERLAP),
'embedding_model_name': best_parameter.get('embedding_model',
Configuration.DEFAULT_SENTENCE_TRANSFORMER_MODEL),
'vector_db_type': tuned_db,
'llm_model_name': llm_model,
'db_path': tuned_path if tuned_db != 'pinecone' else "",
'collection_name': tuned_collection_name,
'vector_db': None,
're_ranker_model': best_parameter.get('re_ranker', Configuration.DEFAULT_RERANKER)
}
if 're_ranker_model' in best_parameter:
tuned_params['re_ranker_model'] = best_parameter['re_ranker_model']
else:
tuned_params['re_ranker_model'] = Configuration.DEFAULT_RERANKER
tuned_pipeline = RAGOperations.initialize_pipeline(tuned_params)
tuned_pipeline.build_index()
return result
except Exception as ex:
logs.logger.info(f"Exception in hypertune: {ex} ")
traceback.print_exc()
return {"error": str(ex)} # Return error for Streamlit to display
@staticmethod
def user_page():
st.title("Flykite HR Policy Query")
st.write(f"Logged in as: {st.session_state.user_info['username']} (Role: {st.session_state.user_info['role']})")
st.info("Ask any question about the Flykite Airlines HR policy document.")
with st.form("user_query_form"):
user_query = st.text_area("Your Query:", height=100, key="user_query_input")
response_type = st.radio("Choose Response Type:",
options=["LLM Tuned Response (RAG + LLM)",
"RAG Raw Response (Retrieved Docs Only)"],
index=0, key="response_type_radio")
k_value_user = st.slider("Number of documents to consider (k)", min_value=1, max_value=10, value=5,
key="k_value_user_slider")
submit_query_button = st.form_submit_button("Get Answer")
if submit_query_button and user_query:
st.subheader("Response:")
with st.spinner("Fetching answer..."):
try:
display_raw = (response_type == "RAG Raw Response (Retrieved Docs Only)")
# Direct call to RAGOperations.run_search_job
result = RAGOperations.run_search_job(
query=user_query,
raw=display_raw,
k=k_value_user,
use_tuned=True, # User page always uses tuned if available
user_context=st.session_state.user_context # Pass user context
)
if result and "error" not in result:
response_data = result.get('response', {})
evaluation = result.get('evaluation',{})
if display_raw:
st.json(response_data) # Raw output from main.py is already formatted
else:
if 'summary' in response_data:
st.markdown(response_data['summary'])
if 'sources' in response_data and response_data['sources']:
st.subheader("Sources:")
for source in response_data['sources']:
if isinstance(source, dict):
st.markdown(
f"- **Document ID:** {source.get('document_id', 'N/A')}, **Page:** {source.get('page', 'N/A')}, **Section:** {source.get('section', 'N/A')}, **Clause:** {source.get('clause', 'N/A')}")
else: # Fallback for raw string sources
st.markdown(f"- {source}")
else:
st.json(response_data)
if evaluation:
#st.markdown(f"**Evaluation Results:** **Groundedness Score** {evaluation.get('Groundedness score', 'N/A')}, **Relevance Score:** {evaluation.get('Relevance score', 'N/A')}, **Reasoning** {evaluation.get('Reasoning', 'N/A')}")
st.json(evaluation)
else:
st.error(
f"Failed to get a response: {result.get('error', 'Unknown error')}. Please try again.")
except Exception as e:
st.error(f"An unexpected error occurred during user query: {e}")
st.error(traceback.format_exc())
elif submit_query_button and not user_query:
st.warning("Please enter a query.")
def main_app():
st.sidebar.title("Navigation")
if 'logged_in' not in st.session_state:
st.session_state.logged_in = False
if 'page' not in st.session_state:
st.session_state.page = "Home"
if not st.session_state.logged_in:
st.session_state.page = "Home"
RAGOperations.home_page()
else:
st.sidebar.button("Home", on_click=lambda: st.session_state.update(page="Home"))
if st.session_state.user_info and st.session_state.user_info['role'] == 'admin':
st.sidebar.button("Admin Dashboard", on_click=lambda: st.session_state.update(page="Admin"))
st.sidebar.button("User Query", on_click=lambda: st.session_state.update(page="User"))
else:
st.sidebar.button("User Query", on_click=lambda: st.session_state.update(page="User"))
if st.session_state.page == "Home":
RAGOperations.home_page()
elif st.session_state.page == "Admin":
RAGOperations.admin_page()
elif st.session_state.page == "User":
RAGOperations.user_page()
if __name__ == "__main__":
main_app()