Spaces:
Runtime error
Runtime error
| import os | |
| import gradio as gr | |
| import requests | |
| import inspect | |
| import pandas as pd | |
| # (Keep Constants as is) | |
| # --- Constants --- | |
| DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
| # --- Basic Agent Definition --- | |
| # ============================================================================== | |
| # 1. IMPORTS AND SETUP | |
| # ============================================================================== | |
| import os | |
| from dotenv import load_dotenv | |
| from typing import TypedDict, Annotated, List | |
| # LangChain and LangGraph imports | |
| from langchain_huggingface import HuggingFaceEndpoint | |
| from langchain_community.tools.tavily_search import TavilySearchResults | |
| from langchain_experimental.tools import PythonREPLTool | |
| from langchain_core.messages import BaseMessage, HumanMessage | |
| from langchain_core.prompts import ChatPromptTemplate | |
| from langgraph.graph import StateGraph, END | |
| from langgraph.prebuilt import ToolNode | |
| # ============================================================================== | |
| # 2. LOAD API KEYS AND DEFINE TOOLS | |
| # ============================================================================== | |
| load_dotenv() | |
| hf_token = os.getenv("HF_TOKEN") | |
| tavily_api_key = os.getenv("TAVILY_API_KEY") | |
| if not hf_token or not tavily_api_key: | |
| # This will show a clear error in the logs if keys are missing | |
| raise ValueError("HF_TOKEN or TAVILY_API_KEY not set. Please add them to your Space secrets.") | |
| os.environ["TAVILY_API_KEY"] = tavily_api_key | |
| # The agent's tools | |
| tools = [TavilySearchResults(max_results=3, description="A search engine for finding up-to-date information on the web."), PythonREPLTool()] | |
| tool_node = ToolNode(tools) | |
| # ============================================================================== | |
| # 3. CONFIGURE THE LLM (THE "BRAIN") | |
| # ============================================================================== | |
| # The model we'll use as the agent's brain | |
| repo_id = "meta-llama/Meta-Llama-3-8B-Instruct" | |
| # The system prompt gives the agent its mission and instructions | |
| SYSTEM_PROMPT = """You are a highly capable AI agent named 'GAIA-Solver'. Your mission is to accurately answer complex questions. | |
| **Your Instructions:** | |
| 1. **Analyze:** Carefully read the user's question to understand all parts of what is being asked. | |
| 2. **Plan:** Think step-by-step. Break the problem into smaller tasks. Decide which tool is best for each task. (e.g., use 'tavily_search_results_json' for web searches, use 'python_repl' for calculations or code execution). | |
| 3. **Execute:** Call ONE tool at a time. | |
| 4. **Observe & Reason:** After getting a tool's result, observe it. Decide if you have the final answer or if you need to use another tool. | |
| 5. **Final Answer:** Once you are confident, provide a clear, direct, and concise final answer. Do not include your thought process in the final answer. | |
| """ | |
| # Initialize the LLM endpoint | |
| llm = HuggingFaceEndpoint( | |
| repo_id=repo_id, | |
| huggingfacehub_api_token=hf_token, | |
| temperature=0, # Set to 0 for deterministic, less random output | |
| max_new_tokens=2048, | |
| ) | |
| # ============================================================================== | |
| # 4. BUILD THE LANGGRAPH AGENT | |
| # ============================================================================== | |
| # Define the Agent's State (its memory) | |
| class AgentState(TypedDict): | |
| messages: Annotated[List[BaseMessage], lambda x, y: x + y] | |
| # This is a more robust way to combine the prompt, model, and tool binding | |
| # It ensures the system prompt is always used. | |
| llm_with_tools = llm.bind_tools(tools) | |
| # Define the Agent Node | |
| def agent_node(state): | |
| # Get the last message to pass to the model | |
| last_message = state['messages'][-1] | |
| # Prepend the system prompt to every call | |
| prompt_with_system = [ | |
| HumanMessage(content=SYSTEM_PROMPT, name="system_prompt"), | |
| last_message | |
| ] | |
| response = llm_with_tools.invoke(prompt_with_system) | |
| return {"messages": [response]} | |
| # Define the Edge Logic | |
| def should_continue(state): | |
| last_message = state["messages"][-1] | |
| if last_message.tool_calls: | |
| return "tools" # Route to the tool node | |
| return END # End the process | |
| # Assemble the graph | |
| workflow = StateGraph(AgentState) | |
| workflow.add_node("agent", agent_node) | |
| workflow.add_node("tools", tool_node) | |
| workflow.set_entry_point("agent") | |
| workflow.add_conditional_edges( | |
| "agent", | |
| should_continue, | |
| {"tools": "tools", "end": END}, | |
| ) | |
| workflow.add_edge("tools", "agent") | |
| # Compile the graph into a runnable app | |
| app = workflow.compile() | |
| # ============================================================================== | |
| # 5. THE BASICAGENT CLASS (FOR THE TEST HARNESS) | |
| # This MUST be at the end, after `app` is defined. | |
| # ============================================================================== | |
| class BasicAgent: | |
| """ | |
| This is the agent class that the GAIA test harness will use. | |
| """ | |
| def __init__(self): | |
| # The compiled LangGraph app is our agent executor | |
| self.agent_executor = app | |
| def run(self, question: str) -> str: | |
| """ | |
| This method is called by the test script with each question. | |
| It runs the LangGraph agent and returns the final answer. | |
| """ | |
| print(f"Agent received question (first 80 chars): {question[:80]}...") | |
| try: | |
| # Format the input for our graph | |
| inputs = {"messages": [HumanMessage(content=question)]} | |
| # Stream the response to get the final answer | |
| final_response = "" | |
| for s in self.agent_executor.stream(inputs, {"recursion_limit": 15}): | |
| if "agent" in s: | |
| # The final answer is the content of the last message from the agent node | |
| if s["agent"]["messages"][-1].content: | |
| final_response = s["agent"]["messages"][-1].content | |
| # A fallback in case the agent finishes without a clear message | |
| if not final_response: | |
| final_response = "Agent finished but did not produce a final answer." | |
| print(f"Agent returning final answer (first 80 chars): {final_response[:80]}...") | |
| return final_response | |
| except Exception as e: | |
| print(f"An error occurred in agent execution: {e}") | |
| return f"Error: {e}" | |
| # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------ | |
| # class BasicAgent: | |
| # def __init__(self): | |
| # print("BasicAgent initialized.") | |
| # def __call__(self, question: str) -> str: | |
| # print(f"Agent received question (first 50 chars): {question[:50]}...") | |
| # fixed_answer = "This is a default answer." | |
| # print(f"Agent returning fixed answer: {fixed_answer}") | |
| # return fixed_answer | |
| def run_and_submit_all( profile: gr.OAuthProfile | None): | |
| """ | |
| Fetches all questions, runs the BasicAgent on them, submits all answers, | |
| and displays the results. | |
| """ | |
| # --- Determine HF Space Runtime URL and Repo URL --- | |
| space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code | |
| if profile: | |
| username= f"{profile.username}" | |
| print(f"User logged in: {username}") | |
| else: | |
| print("User not logged in.") | |
| return "Please Login to Hugging Face with the button.", None | |
| api_url = DEFAULT_API_URL | |
| questions_url = f"{api_url}/questions" | |
| submit_url = f"{api_url}/submit" | |
| # 1. Instantiate Agent ( modify this part to create your agent) | |
| try: | |
| agent = BasicAgent() | |
| except Exception as e: | |
| print(f"Error instantiating agent: {e}") | |
| return f"Error initializing agent: {e}", None | |
| # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public) | |
| agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
| print(agent_code) | |
| # 2. Fetch Questions | |
| print(f"Fetching questions from: {questions_url}") | |
| try: | |
| response = requests.get(questions_url, timeout=15) | |
| response.raise_for_status() | |
| questions_data = response.json() | |
| if not questions_data: | |
| print("Fetched questions list is empty.") | |
| return "Fetched questions list is empty or invalid format.", None | |
| print(f"Fetched {len(questions_data)} questions.") | |
| except requests.exceptions.RequestException as e: | |
| print(f"Error fetching questions: {e}") | |
| return f"Error fetching questions: {e}", None | |
| except requests.exceptions.JSONDecodeError as e: | |
| print(f"Error decoding JSON response from questions endpoint: {e}") | |
| print(f"Response text: {response.text[:500]}") | |
| return f"Error decoding server response for questions: {e}", None | |
| except Exception as e: | |
| print(f"An unexpected error occurred fetching questions: {e}") | |
| return f"An unexpected error occurred fetching questions: {e}", None | |
| # 3. Run your Agent | |
| results_log = [] | |
| answers_payload = [] | |
| print(f"Running agent on {len(questions_data)} questions...") | |
| for item in questions_data: | |
| task_id = item.get("task_id") | |
| question_text = item.get("question") | |
| if not task_id or question_text is None: | |
| print(f"Skipping item with missing task_id or question: {item}") | |
| continue | |
| try: | |
| submitted_answer = agent(question_text) | |
| answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
| results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
| except Exception as e: | |
| print(f"Error running agent on task {task_id}: {e}") | |
| results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
| if not answers_payload: | |
| print("Agent did not produce any answers to submit.") | |
| return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
| # 4. Prepare Submission | |
| submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
| status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
| print(status_update) | |
| # 5. Submit | |
| print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
| try: | |
| response = requests.post(submit_url, json=submission_data, timeout=60) | |
| response.raise_for_status() | |
| result_data = response.json() | |
| final_status = ( | |
| f"Submission Successful!\n" | |
| f"User: {result_data.get('username')}\n" | |
| f"Overall Score: {result_data.get('score', 'N/A')}% " | |
| f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
| f"Message: {result_data.get('message', 'No message received.')}" | |
| ) | |
| print("Submission successful.") | |
| results_df = pd.DataFrame(results_log) | |
| return final_status, results_df | |
| except requests.exceptions.HTTPError as e: | |
| error_detail = f"Server responded with status {e.response.status_code}." | |
| try: | |
| error_json = e.response.json() | |
| error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
| except requests.exceptions.JSONDecodeError: | |
| error_detail += f" Response: {e.response.text[:500]}" | |
| status_message = f"Submission Failed: {error_detail}" | |
| print(status_message) | |
| results_df = pd.DataFrame(results_log) | |
| return status_message, results_df | |
| except requests.exceptions.Timeout: | |
| status_message = "Submission Failed: The request timed out." | |
| print(status_message) | |
| results_df = pd.DataFrame(results_log) | |
| return status_message, results_df | |
| except requests.exceptions.RequestException as e: | |
| status_message = f"Submission Failed: Network error - {e}" | |
| print(status_message) | |
| results_df = pd.DataFrame(results_log) | |
| return status_message, results_df | |
| except Exception as e: | |
| status_message = f"An unexpected error occurred during submission: {e}" | |
| print(status_message) | |
| results_df = pd.DataFrame(results_log) | |
| return status_message, results_df | |
| # --- Build Gradio Interface using Blocks --- | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# Basic Agent Evaluation Runner") | |
| gr.Markdown( | |
| """ | |
| **Instructions:** | |
| 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... | |
| 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. | |
| 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. | |
| --- | |
| **Disclaimers:** | |
| Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). | |
| This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. | |
| """ | |
| ) | |
| gr.LoginButton() | |
| run_button = gr.Button("Run Evaluation & Submit All Answers") | |
| status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
| # Removed max_rows=10 from DataFrame constructor | |
| results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
| run_button.click( | |
| fn=run_and_submit_all, | |
| outputs=[status_output, results_table] | |
| ) | |
| if __name__ == "__main__": | |
| print("\n" + "-"*30 + " App Starting " + "-"*30) | |
| # Check for SPACE_HOST and SPACE_ID at startup for information | |
| space_host_startup = os.getenv("SPACE_HOST") | |
| space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup | |
| if space_host_startup: | |
| print(f"✅ SPACE_HOST found: {space_host_startup}") | |
| print(f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
| else: | |
| print("ℹ️ SPACE_HOST environment variable not found (running locally?).") | |
| if space_id_startup: # Print repo URLs if SPACE_ID is found | |
| print(f"✅ SPACE_ID found: {space_id_startup}") | |
| print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
| print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") | |
| else: | |
| print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") | |
| print("-"*(60 + len(" App Starting ")) + "\n") | |
| print("Launching Gradio Interface for Basic Agent Evaluation...") | |
| demo.launch(debug=True, share=False) | |
| ########################################### | |
| # import os | |
| # import gradio as gr | |
| # import requests | |
| # import inspect | |
| # import pandas as pd | |
| # from dotenv import load_dotenv | |
| # from typing import TypedDict, Annotated, List | |
| # # ============================================================================== | |
| # # PART 1: YOUR AGENT'S LOGIC AND DEFINITION | |
| # # ============================================================================== | |
| # # LangChain and LangGraph imports | |
| # from langchain_huggingface import HuggingFaceEndpoint | |
| # # NEW: Import TavilySearch from the new package | |
| # from langchain_tavily import TavilySearch | |
| # from langchain_experimental.tools import PythonREPLTool | |
| # from langchain_core.messages import BaseMessage, HumanMessage | |
| # from langgraph.graph import StateGraph, END | |
| # from langgraph.prebuilt import ToolNode | |
| # # NEW: Import the compatible agent constructor and prompt hub | |
| # from langchain.agents import create_tool_calling_agent | |
| # from langchain import hub | |
| # # Load API keys from .env file or Space secrets | |
| # load_dotenv() | |
| # hf_token = os.getenv("HF_TOKEN") | |
| # tavily_api_key = os.getenv("TAVILY_API_KEY") | |
| # if tavily_api_key: | |
| # os.environ["TAVILY_API_KEY"] = tavily_api_key | |
| # else: | |
| # print("Warning: TAVILY_API_KEY not found. Web search tool will not work.") | |
| # # --- Define Agent Tools --- | |
| # # NEW: Using TavilySearch from the correct package | |
| # tools = [ | |
| # TavilySearch(max_results=3, description="A search engine for finding up-to-date information on the web."), | |
| # PythonREPLTool() | |
| # ] | |
| # tool_node = ToolNode(tools) | |
| # # --- Configure the LLM "Brain" --- | |
| # repo_id = "meta-llama/Meta-Llama-3-8B-Instruct" | |
| # llm = HuggingFaceEndpoint( | |
| # repo_id=repo_id, | |
| # huggingfacehub_api_token=hf_token, | |
| # temperature=0, | |
| # max_new_tokens=2048, | |
| # ) | |
| # # --- THE FIX: Create Agent with a Compatible Method --- | |
| # # REMOVED: llm_with_tools = llm.bind_tools(tools) | |
| # # This was causing the error. | |
| # # NEW: We pull a pre-made prompt that knows how to handle tool calls. | |
| # prompt = hub.pull("hwchase17/react-json") | |
| # # NEW: We use `create_tool_calling_agent`. This function correctly combines the LLM, | |
| # # the tools, and the prompt, without needing the .bind_tools() method. | |
| # agent_runnable = create_tool_calling_agent(llm, tools, prompt) | |
| # # --- Build the LangGraph Agent --- | |
| # class AgentState(TypedDict): | |
| # # The 'messages' key is no longer used, 'input' and 'agent_outcome' are standard for this agent type | |
| # input: str | |
| # chat_history: list[BaseMessage] | |
| # agent_outcome: dict | |
| # # NEW: The agent_node is much simpler now. It just calls the runnable we created. | |
| # def agent_node(state): | |
| # outcome = agent_runnable.invoke(state) | |
| # return {"agent_outcome": outcome} | |
| # def tool_node_executor(state): | |
| # # The agent_runnable provides tool calls in a specific format. We execute them. | |
| # tool_calls = state["agent_outcome"].tool_calls | |
| # tool_outputs = [] | |
| # for tool_call in tool_calls: | |
| # tool_name = tool_call["name"] | |
| # tool_to_call = {tool.name: tool for tool in tools}[tool_name] | |
| # tool_output = tool_to_call.invoke(tool_call["args"]) | |
| # tool_outputs.append({"output": tool_output, "tool_call_id": tool_call["id"]}) | |
| # return {"intermediate_steps": tool_outputs} | |
| # # This setup is more complex but correctly models the ReAct loop in LangGraph | |
| # class BasicAgent: | |
| # def __init__(self): | |
| # if not hf_token or not tavily_api_key: | |
| # raise ValueError("HF_TOKEN or TAVILY_API_KEY not set. Please add them to your Space secrets.") | |
| # print("LangGraph Agent initialized successfully.") | |
| # # We need an agent executor to run the loop | |
| # from langchain.agents import AgentExecutor | |
| # self.agent_executor = AgentExecutor(agent=agent_runnable, tools=tools, verbose=True) | |
| # def __call__(self, question: str) -> str: | |
| # print(f"Agent received question (first 80 chars): {question[:80]}...") | |
| # try: | |
| # # The AgentExecutor expects a dictionary with an "input" key. | |
| # response = self.agent_executor.invoke({"input": question}) | |
| # final_answer = response.get("output", "Agent did not produce an output.") | |
| # print(f"Agent returning final answer (first 80 chars): {final_answer[:80]}...") | |
| # return final_answer | |
| # except Exception as e: | |
| # print(f"An error occurred in agent execution: {e}") | |
| # return f"Error: {e}" | |
| # # ============================================================================== | |
| # # PART 2: THE GRADIO TEST HARNESS UI (UNCHANGED) | |
| # # ============================================================================== | |
| # # --- Constants --- | |
| # DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
| # def run_and_submit_all(profile: gr.OAuthProfile | None): | |
| # # This entire function remains the same as the template | |
| # space_id = os.getenv("SPACE_ID") | |
| # if profile: | |
| # username= f"{profile.username}" | |
| # print(f"User logged in: {username}") | |
| # else: | |
| # print("User not logged in.") | |
| # return "Please Login to Hugging Face with the button.", None | |
| # api_url = DEFAULT_API_URL | |
| # questions_url = f"{api_url}/questions" | |
| # submit_url = f"{api_url}/submit" | |
| # try: | |
| # agent = BasicAgent() | |
| # except Exception as e: | |
| # print(f"Error instantiating agent: {e}") | |
| # return f"Error initializing agent: {e}", None | |
| # agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
| # print(f"Fetching questions from: {questions_url}") | |
| # try: | |
| # response = requests.get(questions_url, timeout=15) | |
| # response.raise_for_status() | |
| # questions_data = response.json() | |
| # print(f"Fetched {len(questions_data)} questions.") | |
| # except Exception as e: | |
| # return f"An unexpected error occurred fetching questions: {e}", None | |
| # results_log, answers_payload = [], [] | |
| # print(f"Running agent on {len(questions_data)} questions...") | |
| # for item in questions_data: | |
| # task_id, question_text = item.get("task_id"), item.get("question") | |
| # if not task_id or question_text is None: continue | |
| # try: | |
| # submitted_answer = agent(question_text) | |
| # answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
| # results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
| # except Exception as e: | |
| # results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
| # if not answers_payload: return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
| # submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
| # print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
| # try: | |
| # response = requests.post(submit_url, json=submission_data, timeout=60) | |
| # response.raise_for_status() | |
| # result_data = response.json() | |
| # final_status = (f"Submission Successful!\nUser: {result_data.get('username')}\nOverall Score: {result_data.get('score', 'N/A')}% ({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\nMessage: {result_data.get('message', '')}") | |
| # return final_status, pd.DataFrame(results_log) | |
| # except Exception as e: | |
| # return f"An unexpected error occurred during submission: {e}", pd.DataFrame(results_log) | |
| # # --- Gradio Interface (Unchanged) --- | |
| # with gr.Blocks() as demo: | |
| # gr.Markdown("# GAIA Agent Evaluation Runner") | |
| # gr.Markdown("1. Log in. 2. Click 'Run Evaluation'.") | |
| # gr.LoginButton() | |
| # run_button = gr.Button("Run Evaluation & Submit All Answers") | |
| # status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
| # results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
| # run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table]) | |
| # if __name__ == "__main__": | |
| # demo.launch(debug=True, share=False) |