Spaces:
Sleeping
Sleeping
File size: 8,158 Bytes
1b704ad 03b696f 25e7823 7b5763f 25e7823 03b696f 0b5b20e 1b704ad 03b696f 1b704ad 03b696f 1b704ad 0b5b20e 25e7823 03b696f 25e7823 1b704ad 03b696f 1b704ad 25e7823 03b696f 25e7823 1b704ad 25e7823 1b704ad 25e7823 1b704ad 03b696f 1b704ad 25e7823 03b696f 0b5b20e 03b696f 0b5b20e 1b704ad 0b5b20e 25e7823 1b704ad 25e7823 03b696f 25e7823 03b696f ebb102b 25e7823 ebb102b 25e7823 1b704ad 25e7823 1b704ad 25e7823 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
# # core/image_generator.py
# import os
# import torch
# from diffusers import StableDiffusionXLPipeline
# from huggingface_hub import hf_hub_download
# from pathlib import Path
# from typing import List
# from io import BytesIO
# import base64
# from PIL import Image
# # Set cache and model directories early
# HF_CACHE_DIR = Path("/tmp/hf_cache")
# HF_CACHE_DIR.mkdir(parents=True, exist_ok=True)
# os.chmod(HF_CACHE_DIR, 0o777)
# os.environ["HF_HOME"] = str(HF_CACHE_DIR)
# os.environ["TRANSFORMERS_CACHE"] = str(HF_CACHE_DIR)
# os.environ["XDG_CACHE_HOME"] = str(HF_CACHE_DIR)
# os.environ["HF_DATASETS_CACHE"] = str(HF_CACHE_DIR)
# os.environ["HF_MODULES_CACHE"] = str(HF_CACHE_DIR)
# MODEL_DIR = Path("/tmp/models/realvisxl_v4")
# MODEL_DIR.mkdir(parents=True, exist_ok=True)
# os.chmod(MODEL_DIR, 0o777)
# # ---------------- MODEL CONFIG ----------------
# MODEL_REPO = "SG161222/RealVisXL_V4.0"
# MODEL_FILENAME = "realvisxlV40_v40LightningBakedvae.safetensors"
# MODEL_DIR = Path("/tmp/models/realvisxl_v4")
# os.makedirs(MODEL_DIR, exist_ok=True)
# # ---------------- MODEL DOWNLOAD ----------------
# def download_model() -> Path:
# """
# Downloads RealVisXL V4.0 model if not present.
# Returns the local model path.
# """
# model_path = MODEL_DIR / MODEL_FILENAME
# if not model_path.exists():
# print("[ImageGen] Downloading RealVisXL V4.0 model...")
# model_path = hf_hub_download(
# repo_id=MODEL_REPO,
# filename=MODEL_FILENAME,
# local_dir=str(MODEL_DIR),
# cache_dir=str(HF_CACHE_DIR), # ensure writable cache is used
# force_download=False,
# )
# print(f"[ImageGen] Model downloaded to: {model_path}")
# else:
# print("[ImageGen] Model already exists. Skipping download.")
# return model_path
# # ---------------- PIPELINE LOAD ----------------
# def load_pipeline() -> StableDiffusionXLPipeline:
# """
# Loads the RealVisXL V4.0 model for image generation.
# """
# model_path = download_model()
# print("[ImageGen] Loading model into pipeline...")
# pipe = StableDiffusionXLPipeline.from_single_file(
# str(model_path),
# torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
# )
# if torch.cuda.is_available():
# pipe.to("cuda")
# print("[ImageGen] Model ready.")
# return pipe
# # ---------------- GLOBAL PIPELINE CACHE ----------------
# pipe: StableDiffusionXLPipeline | None = None
# # ---------------- UTILITY: PIL TO BASE64 ----------------
# def pil_to_base64(img: Image.Image) -> str:
# """
# Converts a PIL image to a base64 string for frontend display.
# """
# buffered = BytesIO()
# img.save(buffered, format="PNG")
# img_bytes = buffered.getvalue()
# img_b64 = base64.b64encode(img_bytes).decode("utf-8")
# return f"data:image/png;base64,{img_b64}"
# # ---------------- IMAGE GENERATION ----------------
# def generate_images(prompt: str, seed: int = None, num_images: int = 3) -> List[str]:
# """
# Generates high-quality images using RealVisXL V4.0.
# Supports deterministic generation using a seed.
# Args:
# prompt (str): Text prompt for image generation.
# seed (int, optional): Seed for deterministic generation.
# num_images (int): Number of images to generate.
# Returns:
# List[str]: List of base64-encoded images.
# """
# global pipe
# if pipe is None:
# pipe = load_pipeline()
# print(f"[ImageGen] Generating {num_images} image(s) for prompt: '{prompt}' with seed={seed}")
# images: List[str] = []
# for i in range(num_images):
# generator = None
# if seed is not None:
# device = "cuda" if torch.cuda.is_available() else "cpu"
# generator = torch.Generator(device).manual_seed(seed + i)
# result = pipe(prompt, num_inference_steps=30, generator=generator).images[0]
# images.append(pil_to_base64(result))
# print(f"[ImageGen] Generated {len(images)} images successfully.")
# return images
# core/image_generator.py
import os
import torch
from diffusers import StableDiffusionXLPipeline
from huggingface_hub import hf_hub_download
from pathlib import Path
from typing import List
from io import BytesIO
import base64
from PIL import Image
# ---------------- CACHE & MODEL DIRECTORIES ----------------
HF_CACHE_DIR = Path("/tmp/hf_cache")
MODEL_DIR = Path("/tmp/models/realvisxl_v4")
# Create directories safely (no chmod)
for d in [HF_CACHE_DIR, MODEL_DIR]:
d.mkdir(parents=True, exist_ok=True)
# Apply environment variables BEFORE any Hugging Face usage
os.environ.update({
"HF_HOME": str(HF_CACHE_DIR),
"TRANSFORMERS_CACHE": str(HF_CACHE_DIR),
"XDG_CACHE_HOME": str(HF_CACHE_DIR),
"HF_DATASETS_CACHE": str(HF_CACHE_DIR),
"HF_MODULES_CACHE": str(HF_CACHE_DIR),
})
# ---------------- MODEL CONFIG ----------------
MODEL_REPO = "SG161222/RealVisXL_V4.0"
MODEL_FILENAME = "realvisxlV40_v40LightningBakedvae.safetensors"
# ---------------- MODEL DOWNLOAD ----------------
def download_model() -> Path:
"""
Downloads RealVisXL V4.0 model if not present.
Returns local path.
"""
model_path = MODEL_DIR / MODEL_FILENAME
if not model_path.exists():
print("[ImageGen] Downloading RealVisXL V4.0 model...")
model_path = Path(
hf_hub_download(
repo_id=MODEL_REPO,
filename=MODEL_FILENAME,
cache_dir=str(HF_CACHE_DIR),
force_download=False,
resume_download=True, # safer if download interrupted
)
)
print(f"[ImageGen] Model downloaded to: {model_path}")
else:
print("[ImageGen] Model already exists. Skipping download.")
return model_path
# ---------------- PIPELINE LOAD ----------------
def load_pipeline() -> StableDiffusionXLPipeline:
"""
Loads the RealVisXL V4.0 model for image generation.
"""
model_path = download_model()
print("[ImageGen] Loading model into pipeline...")
pipe = StableDiffusionXLPipeline.from_single_file(
str(model_path),
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
)
if torch.cuda.is_available():
pipe.to("cuda")
else:
pipe.to("cpu")
# Optional: skip safety checker to save memory/performance
pipe.safety_checker = None
# Enable attention slicing for memory-efficient CPU usage
pipe.enable_attention_slicing()
print("[ImageGen] Model ready.")
return pipe
# ---------------- GLOBAL PIPELINE CACHE ----------------
pipe: StableDiffusionXLPipeline | None = None
# ---------------- UTILITY: PIL → BASE64 ----------------
def pil_to_base64(img: Image.Image) -> str:
"""
Converts PIL image to base64 string for frontend.
"""
buffered = BytesIO()
img.save(buffered, format="PNG")
return f"data:image/png;base64,{base64.b64encode(buffered.getvalue()).decode()}"
# ---------------- IMAGE GENERATION ----------------
def generate_images(prompt: str, seed: int | None = None, num_images: int = 3) -> List[str]:
"""
Generates high-quality images using RealVisXL V4.0.
Returns a list of base64-encoded PNGs.
"""
global pipe
if pipe is None:
pipe = load_pipeline()
print(f"[ImageGen] Generating {num_images} image(s) for prompt: '{prompt}' seed={seed}")
images: List[str] = []
for i in range(num_images):
generator = None
if seed is not None:
device = "cuda" if torch.cuda.is_available() else "cpu"
generator = torch.Generator(device).manual_seed(seed + i)
try:
result = pipe(prompt, num_inference_steps=30, generator=generator).images[0]
images.append(pil_to_base64(result))
except Exception as e:
print(f"[ImageGen] ⚠️ Generation failed on image {i}: {e}")
continue
print(f"[ImageGen] Generated {len(images)} image(s) successfully.")
return images
|