Spaces:
Running
on
Zero
Running
on
Zero
fix output of inference
Browse files
app.py
CHANGED
|
@@ -109,11 +109,11 @@ def run_model(target_dir, model) -> dict:
|
|
| 109 |
predictions["depth_conf"] = torch.stack(all_depth_conf, dim=0) # (S, H, W)
|
| 110 |
predictions["pose_enc"] = torch.stack(all_camera_pose, dim=0) # (S, 9)
|
| 111 |
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
|
| 118 |
# Convert pose encoding to extrinsic and intrinsic matrices
|
| 119 |
print("Converting pose encoding to extrinsic and intrinsic matrices...")
|
|
|
|
| 109 |
predictions["depth_conf"] = torch.stack(all_depth_conf, dim=0) # (S, H, W)
|
| 110 |
predictions["pose_enc"] = torch.stack(all_camera_pose, dim=0) # (S, 9)
|
| 111 |
|
| 112 |
+
print("World points shape:", predictions["world_points"].shape)
|
| 113 |
+
print("World points confidence shape:", predictions["world_points_conf"].shape)
|
| 114 |
+
print("Depth map shape:", predictions["depth"].shape)
|
| 115 |
+
print("Depth confidence shape:", predictions["depth_conf"].shape)
|
| 116 |
+
print("Pose encoding shape:", predictions["pose_enc"].shape)
|
| 117 |
|
| 118 |
# Convert pose encoding to extrinsic and intrinsic matrices
|
| 119 |
print("Converting pose encoding to extrinsic and intrinsic matrices...")
|