Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,6 @@
|
|
| 1 |
import os
|
| 2 |
import torch
|
| 3 |
import gradio as gr
|
| 4 |
-
import ipywidgets as widgets
|
| 5 |
from pathlib import Path
|
| 6 |
from transformers import AutoConfig, AutoTokenizer
|
| 7 |
from optimum.intel.openvino import OVModelForCausalLM
|
|
@@ -18,7 +17,6 @@ import requests
|
|
| 18 |
|
| 19 |
# Define the model loading function (same as in your notebook)
|
| 20 |
def convert_to_int4(model_id, model_configuration, enable_awq=False):
|
| 21 |
-
# Model conversion logic here (same as in notebook)
|
| 22 |
compression_configs = {
|
| 23 |
"qwen2.5-0.5b-instruct": {"sym": True, "group_size": 128, "ratio": 1.0},
|
| 24 |
"default": {"sym": False, "group_size": 128, "ratio": 0.8},
|
|
@@ -45,10 +43,8 @@ def convert_to_int4(model_id, model_configuration, enable_awq=False):
|
|
| 45 |
os.system(export_command)
|
| 46 |
return int4_model_dir
|
| 47 |
|
| 48 |
-
|
| 49 |
# Model and tokenizer loading
|
| 50 |
def load_model(model_dir, device):
|
| 51 |
-
# Load model using OpenVINO
|
| 52 |
ov_config = {hints.performance_mode(): hints.PerformanceMode.LATENCY, streams.num(): "1", props.cache_dir(): ""}
|
| 53 |
core = ov.Core()
|
| 54 |
model_name = model_configuration["model_id"]
|
|
@@ -64,7 +60,7 @@ def load_model(model_dir, device):
|
|
| 64 |
|
| 65 |
return ov_model, tok
|
| 66 |
|
| 67 |
-
#
|
| 68 |
def bot(history, temperature, top_p, top_k, repetition_penalty, conversation_id):
|
| 69 |
input_ids = convert_history_to_token(history)
|
| 70 |
if input_ids.shape[1] > 2000:
|
|
@@ -99,23 +95,56 @@ def bot(history, temperature, top_p, top_k, repetition_penalty, conversation_id)
|
|
| 99 |
history[-1][1] = partial_text
|
| 100 |
yield history
|
| 101 |
|
| 102 |
-
# Gradio interface
|
| 103 |
def create_gradio_interface():
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
# Choose model based on the selected language
|
| 108 |
-
model_configuration = SUPPORTED_LLM_MODELS[model_language[0]][model_id.value]
|
| 109 |
-
|
| 110 |
-
# Prepare model (convert to INT4, etc.)
|
| 111 |
-
int4_model_dir = convert_to_int4(model_id.value, model_configuration)
|
| 112 |
-
|
| 113 |
-
# Load model and tokenizer
|
| 114 |
-
device = device_widget("CPU")
|
| 115 |
-
ov_model, tok = load_model(int4_model_dir, device)
|
| 116 |
|
| 117 |
-
#
|
| 118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
return demo
|
| 121 |
|
|
@@ -123,4 +152,3 @@ def create_gradio_interface():
|
|
| 123 |
if __name__ == "__main__":
|
| 124 |
app = create_gradio_interface()
|
| 125 |
app.launch(debug=True, share=True) # share=True for public access
|
| 126 |
-
|
|
|
|
| 1 |
import os
|
| 2 |
import torch
|
| 3 |
import gradio as gr
|
|
|
|
| 4 |
from pathlib import Path
|
| 5 |
from transformers import AutoConfig, AutoTokenizer
|
| 6 |
from optimum.intel.openvino import OVModelForCausalLM
|
|
|
|
| 17 |
|
| 18 |
# Define the model loading function (same as in your notebook)
|
| 19 |
def convert_to_int4(model_id, model_configuration, enable_awq=False):
|
|
|
|
| 20 |
compression_configs = {
|
| 21 |
"qwen2.5-0.5b-instruct": {"sym": True, "group_size": 128, "ratio": 1.0},
|
| 22 |
"default": {"sym": False, "group_size": 128, "ratio": 0.8},
|
|
|
|
| 43 |
os.system(export_command)
|
| 44 |
return int4_model_dir
|
| 45 |
|
|
|
|
| 46 |
# Model and tokenizer loading
|
| 47 |
def load_model(model_dir, device):
|
|
|
|
| 48 |
ov_config = {hints.performance_mode(): hints.PerformanceMode.LATENCY, streams.num(): "1", props.cache_dir(): ""}
|
| 49 |
core = ov.Core()
|
| 50 |
model_name = model_configuration["model_id"]
|
|
|
|
| 60 |
|
| 61 |
return ov_model, tok
|
| 62 |
|
| 63 |
+
# Gradio Interface for Bot interaction
|
| 64 |
def bot(history, temperature, top_p, top_k, repetition_penalty, conversation_id):
|
| 65 |
input_ids = convert_history_to_token(history)
|
| 66 |
if input_ids.shape[1] > 2000:
|
|
|
|
| 95 |
history[-1][1] = partial_text
|
| 96 |
yield history
|
| 97 |
|
| 98 |
+
# Define a Gradio interface for user interaction
|
| 99 |
def create_gradio_interface():
|
| 100 |
+
# Dropdown for selecting model language and model ID
|
| 101 |
+
model_language = list(SUPPORTED_LLM_MODELS.keys()) # List of model languages
|
| 102 |
+
model_id = gr.Dropdown(choices=model_language, value=model_language[0], label="Model Language")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
+
# Once model language is selected, show the respective model IDs
|
| 105 |
+
def update_model_ids(model_language):
|
| 106 |
+
model_ids = list(SUPPORTED_LLM_MODELS[model_language].keys())
|
| 107 |
+
return gr.Dropdown.update(choices=model_ids, value=model_ids[0])
|
| 108 |
+
|
| 109 |
+
model_id_selector = gr.Dropdown(choices=model_language, value=model_language[0], label="Model ID")
|
| 110 |
+
model_id_selector.change(update_model_ids, inputs=model_language, outputs=model_id_selector)
|
| 111 |
+
|
| 112 |
+
# Set up a checkbox for enabling AWQ compression
|
| 113 |
+
enable_awq = gr.Checkbox(value=False, label="Enable AWQ for Compression")
|
| 114 |
+
|
| 115 |
+
# Initialize model selection based on language and ID
|
| 116 |
+
def load_model_on_select(model_language, model_id, enable_awq):
|
| 117 |
+
model_configuration = SUPPORTED_LLM_MODELS[model_language][model_id]
|
| 118 |
+
int4_model_dir = convert_to_int4(model_id, model_configuration, enable_awq)
|
| 119 |
+
|
| 120 |
+
# Load the model and tokenizer
|
| 121 |
+
device = device_widget("CPU") # or any device you want to use
|
| 122 |
+
ov_model, tok = load_model(int4_model_dir, device)
|
| 123 |
+
|
| 124 |
+
# Return the loaded model and tokenizer
|
| 125 |
+
return ov_model, tok
|
| 126 |
+
|
| 127 |
+
# Connect model selection UI to load model dynamically
|
| 128 |
+
load_button = gr.Button("Load Model")
|
| 129 |
+
load_button.click(load_model_on_select, inputs=[model_language, model_id, enable_awq], outputs=[gr.Textbox(label="Model Status")])
|
| 130 |
+
|
| 131 |
+
# Create the Gradio chatbot interface
|
| 132 |
+
chatbot = gr.Chatbot()
|
| 133 |
+
|
| 134 |
+
# Parameters for bot generation
|
| 135 |
+
temperature = gr.Slider(minimum=0, maximum=1, step=0.1, label="Temperature", value=0.7)
|
| 136 |
+
top_p = gr.Slider(minimum=0, maximum=1, step=0.1, label="Top-p", value=0.9)
|
| 137 |
+
top_k = gr.Slider(minimum=0, maximum=50, step=1, label="Top-k", value=50)
|
| 138 |
+
repetition_penalty = gr.Slider(minimum=0, maximum=2, step=0.1, label="Repetition Penalty", value=1.0)
|
| 139 |
+
|
| 140 |
+
# Run the Gradio interface
|
| 141 |
+
demo = gr.Interface(
|
| 142 |
+
fn=bot,
|
| 143 |
+
inputs=[chatbot, temperature, top_p, top_k, repetition_penalty],
|
| 144 |
+
outputs=[chatbot],
|
| 145 |
+
title="OpenVINO Chatbot",
|
| 146 |
+
live=True
|
| 147 |
+
)
|
| 148 |
|
| 149 |
return demo
|
| 150 |
|
|
|
|
| 152 |
if __name__ == "__main__":
|
| 153 |
app = create_gradio_interface()
|
| 154 |
app.launch(debug=True, share=True) # share=True for public access
|
|
|