Spaces:
Runtime error
Runtime error
| import os | |
| os.environ.setdefault("HF_HOME", "/tmp/hf") | |
| os.environ.setdefault("HF_HUB_CACHE", "/tmp/hf/hub") | |
| os.environ.setdefault("TRANSFORMERS_CACHE", "/tmp/hf/transformers") | |
| os.environ.setdefault("NANOCHAT_BASE_DIR", "/tmp/nanochat") | |
| from huggingface_hub import hf_hub_download | |
| import torch | |
| import gradio as gr | |
| from nanochat.checkpoint_manager import load_model_from_dir | |
| from nanochat.engine import Engine | |
| # Hardcoded model selection for this Space | |
| MODEL_REPO = "loocorez/nanochat-base-d20-step21400" | |
| STEP = "021400" | |
| DEPTH = "20" | |
| ckpt_dir = f"/tmp/ckpt/d{DEPTH}" | |
| os.makedirs(ckpt_dir, exist_ok=True) | |
| # tokenizer (where nanochat expects it) | |
| tokenizer_dir = "/tmp/nanochat/tokenizer" | |
| os.makedirs(tokenizer_dir, exist_ok=True) | |
| hf_hub_download(MODEL_REPO, "tokenizer/tokenizer.pkl", local_dir=tokenizer_dir, local_dir_use_symlinks=False) | |
| # base checkpoint | |
| hf_hub_download(MODEL_REPO, f"base_checkpoints/d{DEPTH}/model_{STEP}.pt", local_dir=ckpt_dir, local_dir_use_symlinks=False) | |
| hf_hub_download(MODEL_REPO, f"base_checkpoints/d{DEPTH}/meta_{STEP}.json", local_dir=ckpt_dir, local_dir_use_symlinks=False) | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| model, tokenizer, _ = load_model_from_dir(ckpt_dir, device, phase="eval") | |
| engine = Engine(model, tokenizer) | |
| def chat_fn(history, temperature=0.8, top_k=50, max_new_tokens=256): | |
| bos = tokenizer.get_bos_token_id() | |
| user_start = tokenizer.encode_special("<|user_start|>") | |
| user_end = tokenizer.encode_special("<|user_end|>") | |
| assistant_start = tokenizer.encode_special("<|assistant_start|>") | |
| assistant_end = tokenizer.encode_special("<|assistant_end|>") | |
| tokens = [bos] | |
| for role, content in history: | |
| if role == "user": | |
| tokens += [user_start] + tokenizer.encode(content) + [user_end] | |
| else: | |
| tokens += [assistant_start] + tokenizer.encode(content) + [assistant_end] | |
| tokens += [assistant_start] | |
| with torch.amp.autocast(device_type="cuda" if device.type == "cuda" else "cpu", dtype=torch.bfloat16 if device.type == "cuda" else torch.float32): | |
| token_column, _ = next(engine.generate(tokens, num_samples=1, max_tokens=max_new_tokens, temperature=temperature, top_k=top_k)) | |
| new_tokens = token_column[len(tokens):] | |
| return tokenizer.decode(new_tokens) | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# NanoChat BASE") | |
| chat = gr.Chatbot(type="tuple") | |
| msg = gr.Textbox() | |
| temp = gr.Slider(0.0, 1.5, value=0.8, step=0.05, label="Temperature") | |
| topk = gr.Slider(1, 200, value=50, step=1, label="Top-k") | |
| max_toks = gr.Slider(16, 1024, value=256, step=16, label="Max new tokens") | |
| def respond(user_message, chat_history, temperature, top_k, max_new_tokens): | |
| chat_history = chat_history + [("user", user_message)] | |
| reply = chat_fn(chat_history, temperature, top_k, max_new_tokens) | |
| chat_history = chat_history + [("assistant", reply)] | |
| return "", chat_history | |
| msg.submit(respond, [msg, chat, temp, topk, max_toks], [msg, chat]) | |
| demo.launch() | |