magedsar7an's picture
Update app.py
270a762 verified
raw
history blame
9.16 kB
# 🎬 Multilingual Video Classification (Beautiful + Voice Icon)
import os, json, base64
from pathlib import Path
import gradio as gr
import torch, cv2, numpy as np
from PIL import Image
from gtts import gTTS
from transformers import (
BlipProcessor, BlipForConditionalGeneration,
AutoTokenizer, AutoModelForSequenceClassification,
AutoModelForSeq2SeqLM
)
# ---------- CONFIG ----------
MODEL_ID = "magedsar7an/caption-cls-en-small" # ← your HF model repo
FRAMES_PER_VIDEO = 6
FRAME_SIZE = 384
device = "cuda" if torch.cuda.is_available() else "cpu"
SUPPORTED_LANGS = {
"en":"English","ar":"Arabic","fr":"French","tr":"Turkish",
"es":"Spanish","de":"German","hi":"Hindi","id":"Indonesian"
}
MARIAN_TO_EN = {
"ar":"Helsinki-NLP/opus-mt-ar-en",
"fr":"Helsinki-NLP/opus-mt-fr-en",
"tr":"Helsinki-NLP/opus-mt-tr-en",
"es":"Helsinki-NLP/opus-mt-es-en",
"de":"Helsinki-NLP/opus-mt-de-en",
"hi":"Helsinki-NLP/opus-mt-hi-en",
"id":"Helsinki-NLP/opus-mt-id-en",
}
LABEL_TRANSLATIONS = {
"ar": {"clap":"تصفيق","drink":"يشرب","hug":"عناق","kick_ball":"ركل الكرة",
"kiss":"قبلة","run":"يجري","sit":"يجلس","wave":"يلوح"},
"tr": {"clap":"alkış","drink":"içmek","hug":"sarılmak","kick_ball":"topa tekme",
"kiss":"öpücük","run":"koşmak","sit":"oturmak","wave":"el sallamak"},
"fr": {"clap":"applaudir","drink":"boire","hug":"embrasser","kick_ball":"frapper le ballon",
"kiss":"baiser","run":"courir","sit":"s’asseoir","wave":"saluer"},
"es": {"clap":"aplaudir","drink":"beber","hug":"abrazar","kick_ball":"patear la pelota",
"kiss":"besar","run":"correr","sit":"sentarse","wave":"saludar"},
"de": {"clap":"klatschen","drink":"trinken","hug":"umarmen","kick_ball":"den Ball treten",
"kiss":"küssen","run":"laufen","sit":"sitzen","wave":"winken"},
"hi": {"clap":"ताली बजाना","drink":"पीना","hug":"गले लगाना","kick_ball":"गेंद को मारना",
"kiss":"चूमना","run":"दौड़ना","sit":"बैठना","wave":"हाथ हिलाना"},
"id": {"clap":"bertepuk tangan","drink":"minum","hug":"berpelukan","kick_ball":"menendang bola",
"kiss":"cium","run":"berlari","sit":"duduk","wave":"melambaikan tangan"},
}
# ---------- LOAD MODELS ----------
print("Loading BLIP captioner...")
blip_proc = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
blip = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(device).eval()
print("Loading English classifier from HF Hub...")
tok = AutoTokenizer.from_pretrained(MODEL_ID)
cls = AutoModelForSequenceClassification.from_pretrained(MODEL_ID).to(device).eval()
# id2label from model config (you embedded it during upload)
cfg_map = getattr(cls.config, "id2label", None)
if not cfg_map:
raise RuntimeError("id2label not found in config.json; add it to your HF model.")
# normalize keys to int
id2label = {int(k): v for k, v in (cfg_map.items() if isinstance(cfg_map, dict) else enumerate(cfg_map))}
print("✅ Models loaded successfully!")
# ---------- HELPERS ----------
def _resolve_video_path(video):
if isinstance(video, str):
return video if os.path.exists(video) else None
if isinstance(video, dict):
p = video.get("path") or video.get("name")
return p if (isinstance(p, str) and os.path.exists(p)) else None
name = getattr(video, "name", None)
if isinstance(name, str) and os.path.exists(name):
return name
return None
def extract_frames(video_path, k=6, size=384):
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
return []
total = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) or 0
idxs = np.linspace(0, max(total - 1, 0), num=k, dtype=int) if total > 0 else np.linspace(0, 240, num=k, dtype=int)
frames = []
for i in idxs:
cap.set(cv2.CAP_PROP_POS_FRAMES, int(i))
ok, frame = cap.read()
if not ok or frame is None:
continue
h, w = frame.shape[:2]
if h <= 0 or w <= 0:
continue
if h < w:
new_h = size; new_w = int(w * (size / h))
else:
new_w = size; new_h = int(h * (size / w))
frame = cv2.resize(frame, (new_w, new_h))
frames.append(Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)))
cap.release()
return frames
def blip_caption(img):
inputs = blip_proc(images=img, return_tensors="pt").to(device)
with torch.no_grad():
out = blip.generate(**inputs, max_new_tokens=30)
return blip_proc.decode(out[0], skip_special_tokens=True).strip()
def translate_to_en(texts, lang):
if lang == "en": return texts
model_name = MARIAN_TO_EN.get(lang)
if not model_name: return texts
try:
tok_tr = AutoTokenizer.from_pretrained(model_name)
mt = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(device).eval()
outs = []
for i in range(0, len(texts), 16):
batch = texts[i:i + 16]
enc = tok_tr(batch, return_tensors="pt", padding=True, truncation=True).to(device)
with torch.no_grad():
gen = mt.generate(**enc, max_new_tokens=120)
outs.extend(tok_tr.batch_decode(gen, skip_special_tokens=True))
return outs
except Exception as e:
print(f"⚠️ Translation failed: {e}")
return texts
def classify(texts):
enc = tok(texts, return_tensors="pt", padding=True, truncation=True).to(device)
with torch.no_grad():
logits = cls(**enc).logits
probs = torch.softmax(logits, dim=-1).cpu().numpy()
return probs
# ---------- MAIN FN ----------
def classify_video(video, lang):
try:
if not video:
return "<div style='color:orange;'>⚠️ Please upload a video first.</div>"
video_path = _resolve_video_path(video)
if not video_path:
return "<div style='color:red;'>❌ Could not find uploaded video path from Gradio input.</div>"
frames = extract_frames(video_path, FRAMES_PER_VIDEO, FRAME_SIZE)
if not frames:
return "<div style='color:red;'>❌ Could not extract frames. OpenCV could not decode the video.</div>"
captions = [blip_caption(f) for f in frames]
en_caps = translate_to_en(captions, lang)
probs = classify(en_caps)
pred = id2label[int(np.argmax(probs.mean(axis=0)))]
localized = LABEL_TRANSLATIONS.get(lang, {}).get(pred, pred)
# 🔊 TTS (fail-soft if blocked)
audio_b64 = ""
try:
tts = gTTS(localized, lang=lang if lang in SUPPORTED_LANGS else "en")
audio_path = "pred_voice.mp3"
tts.save(audio_path)
with open(audio_path, "rb") as f:
audio_b64 = base64.b64encode(f.read()).decode()
except Exception as e:
print(f"⚠️ TTS failed: {e}")
# 🎨 Card
lang_name = SUPPORTED_LANGS.get(lang, "Unknown")
btn = f"<button onclick=\"new Audio('data:audio/mp3;base64,{audio_b64}').play()\" style='background:#00b4d8;color:white;border:none;border-radius:50%;width:70px;height:70px;cursor:pointer;font-size:1.8em;box-shadow:0 2px 10px rgba(0,180,216,0.5);'>🔊</button>" if audio_b64 else ""
html = f"""
<div style='background: linear-gradient(135deg,#141e30,#243b55);border-radius:16px;padding:35px;color:white;text-align:center;font-family:"Poppins",sans-serif;box-shadow:0 4px 20px rgba(0,0,0,0.3);'>
<h2 style='color:#00b4d8;font-weight:600;margin-bottom:10px;'>🎬 Action Detected</h2>
<h1 style='font-size:2.5em;margin:12px 0;'>{localized}</h1>
{btn}
<p style='opacity:0.8;margin-top:14px;font-size:1.1em;'>({lang_name})</p>
</div>
"""
return html
except Exception as e:
import traceback; traceback.print_exc()
return f"<div style='color:red;font-weight:bold;'>❌ Error:<br>{e}</div>"
# ---------- GRADIO UI ----------
custom_css = """
.gradio-container {
background: linear-gradient(135deg,#0f2027,#203a43,#2c5364);
color: white;
}
h1,h2,h3,label,p,.description {color: white !important;}
footer {display:none !important;}
"""
title = "🎬 Multilingual Video Classification (Beautiful + Voice Icon)"
description = """
Upload your video and choose a language.
The model predicts the action and shows a **beautiful card** 🌍
Click the 🔊 icon to **hear the word pronounced** in that language.
"""
iface = gr.Interface(
fn=classify_video,
inputs=[
gr.Video(label="🎥 Upload Video", sources=["upload"], format="mp4"),
gr.Radio(choices=list(SUPPORTED_LANGS.keys()), value="en", label="🌍 Choose Language"),
],
outputs=gr.HTML(label="✨ Prediction Result"),
title=title,
description=description,
theme="gradio/soft",
css=custom_css,
)
if __name__ == "__main__":
iface.launch(server_name="0.0.0.0", server_port=int(os.environ.get("PORT", 7860)))