Spaces:
Running
Running
File size: 10,603 Bytes
0ef980f c0c9942 0ef980f c0c9942 0ef980f c0c9942 0ef980f c0c9942 0ef980f c0c9942 0ef980f c0c9942 0ef980f c0c9942 0ef980f c0c9942 0ef980f c0c9942 0ef980f c0c9942 0ef980f c0c9942 0ef980f c0c9942 0ef980f c0c9942 d057c94 c0c9942 4a4e9f6 c0c9942 0ef980f c0c9942 0ef980f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
import os
import io
import json
import time
from typing import List, Tuple, Dict, Any, Optional
import fitz # PyMuPDF
from PIL import Image
import gradio as gr
import numpy as np
# =========================
# Config
# =========================
LOGO_IMAGE_PATH = './assets/logo.jpg'
GOOGLE_FONTS_URL = "<link href='https://fonts.googleapis.com/css2?family=Inter:wght@400;500;600;700&display=swap' rel='stylesheet'>"
# Lazy-load the OCR model to reduce startup time and memory
_ocr_model = None
def get_ocr_model(lang: str = "en"):
global _ocr_model
if _ocr_model is not None:
return _ocr_model
# PaddleOCR supports language packs like 'en', 'ch', 'fr', 'german', etc.
# The Spaces container will download the model weights on first run and cache them.
from paddleocr import PaddleOCR # import here to avoid heavy import at startup
_ocr_model = PaddleOCR(use_angle_cls=True, lang=lang, show_log=False)
return _ocr_model
def pdf_page_to_image(pdf_doc: fitz.Document, page_index: int, dpi: int = 300) -> Image.Image:
page = pdf_doc.load_page(page_index)
zoom = dpi / 72.0 # 72 dpi is PDF default
mat = fitz.Matrix(zoom, zoom)
pix = page.get_pixmap(matrix=mat, alpha=False)
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
return img
def run_paddle_ocr_on_image(image: Image.Image, lang: str = "en") -> Tuple[str, List[Dict[str, Any]]]:
ocr = get_ocr_model(lang=lang)
# Convert PIL image to numpy array for PaddleOCR
img_np = np.array(image)
result = ocr.ocr(img_np, cls=True)
lines: List[str] = []
items: List[Dict[str, Any]] = []
# PaddleOCR returns list per image: [[(box, (text, conf)), ...]]
for page_result in result:
if page_result is None:
continue
for det in page_result:
box = det[0]
text = det[1][0]
conf = float(det[1][1])
lines.append(text)
items.append({"bbox": box, "text": text, "confidence": conf})
return "\n".join(lines), items
def extract_text_from_pdf(file_obj, dpi: int = 300, max_pages: int | None = None, lang: str = "en") -> Tuple[str, str, Dict[str, Any]]:
"""
Returns combined text, JSON string with per-page OCR results, and processing stats.
"""
if file_obj is None:
return "", json.dumps({"pages": []}, ensure_ascii=False), {"error": "No file provided"}
start_time = time.time()
try:
# Gradio may pass a path or a tempfile.NamedTemporaryFile-like with .name
pdf_path = file_obj if isinstance(file_obj, str) else getattr(file_obj, "name", None)
if pdf_path is None or not os.path.exists(pdf_path):
# If bytes were passed, fall back to reading from buffer
file_bytes = file_obj.read() if hasattr(file_obj, "read") else None
if not file_bytes:
return "", json.dumps({"pages": []}, ensure_ascii=False), {"error": "Could not read file"}
pdf_doc = fitz.open(stream=file_bytes, filetype="pdf")
else:
pdf_doc = fitz.open(pdf_path)
num_pages = pdf_doc.page_count
if max_pages is not None:
num_pages = min(num_pages, max_pages)
all_text_lines: List[str] = []
pages_payload: List[Dict[str, Any]] = []
for page_index in range(num_pages):
image = pdf_page_to_image(pdf_doc, page_index, dpi=dpi)
page_text, page_items = run_paddle_ocr_on_image(image, lang=lang)
all_text_lines.append(page_text)
pages_payload.append({
"page": page_index + 1,
"items": page_items,
})
combined_text = "\n\n".join([t for t in all_text_lines if t])
json_payload = json.dumps({"pages": pages_payload}, ensure_ascii=False)
processing_time = time.time() - start_time
stats = {
"pages_processed": num_pages,
"total_pages": pdf_doc.page_count,
"processing_time": round(processing_time, 2),
"dpi": dpi,
"language": lang
}
pdf_doc.close()
return combined_text, json_payload, stats
except Exception as e:
return "", json.dumps({"pages": []}, ensure_ascii=False), {"error": str(e)}
def handle_pdf_ocr(pdf_file: str) -> Tuple[str, str, str]:
"""Main handler for PDF OCR processing"""
if not pdf_file:
raise gr.Error("Please upload a PDF file first.")
try:
print(f"Processing PDF: {pdf_file}")
start_time = time.time()
text, json_data, stats = extract_text_from_pdf(pdf_file, dpi=300, max_pages=None, lang="en")
end_time = time.time()
duration = end_time - start_time
print(f"PDF processing completed in {duration:.2f} seconds.")
if "error" in stats:
raise gr.Error(f"Processing failed: {stats['error']}")
# Format stats for display
stats_text = f"""**Processing Statistics:**
- Pages processed: {stats.get('pages_processed', 0)}/{stats.get('total_pages', 0)}
- Processing time: {stats.get('processing_time', 0)}s
- DPI: {stats.get('dpi', 300)}
- Language: {stats.get('language', 'en')}"""
return text, json_data, stats_text
except Exception as e:
error_msg = f"Error processing PDF: {str(e)}"
print(error_msg)
raise gr.Error(error_msg)
# =========================
# CSS & UI
# =========================
custom_css = """
/* Global fonts */
body, .gradio-container {
font-family: "Inter", "Segoe UI", "Roboto", sans-serif;
}
.app-header {
text-align: center;
max-width: 900px;
margin: 0 auto 20px !important;
padding: 20px;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
border-radius: 12px;
color: white;
}
.app-header h1 {
margin: 0;
font-size: 2.5rem;
font-weight: 700;
}
.app-header p {
margin: 10px 0 0 0;
opacity: 0.9;
font-size: 1.1rem;
}
.gradio-container {
padding: 20px 0 !important;
max-width: 1200px;
margin: 0 auto;
}
.upload-section {
background: #f8fafc;
border: 2px dashed #cbd5e1;
border-radius: 12px;
padding: 30px;
text-align: center;
margin: 20px 0;
}
.upload-section:hover {
border-color: #667eea;
background: #f1f5f9;
}
.results-section {
margin-top: 20px;
}
.stats-box {
background: #f0f9ff;
border: 1px solid #0ea5e9;
border-radius: 8px;
padding: 15px;
margin: 10px 0;
}
#text_output {
min-height: 300px;
font-family: 'Monaco', 'Menlo', 'Ubuntu Mono', monospace;
font-size: 14px;
line-height: 1.6;
}
#json_output {
min-height: 200px;
font-family: 'Monaco', 'Menlo', 'Ubuntu Mono', monospace;
font-size: 12px;
}
.process-btn {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
color: white !important;
border: none !important;
padding: 12px 30px !important;
border-radius: 8px !important;
font-weight: 600 !important;
font-size: 16px !important;
}
.process-btn:hover {
transform: translateY(-2px);
box-shadow: 0 8px 25px rgba(102, 126, 234, 0.3);
}
.notice {
background: #fef3c7;
border: 1px solid #f59e0b;
border-radius: 8px;
padding: 15px;
margin: 20px 0;
color: #92400e;
}
.api-section {
background: #f1f5f9;
border-radius: 8px;
padding: 20px;
margin: 20px 0;
border-left: 4px solid #667eea;
}
"""
with gr.Blocks(head=GOOGLE_FONTS_URL, css=custom_css, theme=gr.themes.Soft()) as demo:
# Header
gr.HTML("""
<div class="app-header">
<h1>π PDF OCR Extractor</h1>
<p>Extract text from PDF documents using PaddleOCR + PyMuPDF</p>
</div>
""")
# Notice
gr.HTML("""
<div class="notice">
<strong>π‘ Tip:</strong> This tool processes PDFs by rendering each page as a high-resolution image (300 DPI) and then applying OCR.
For best results, use clear, well-scanned PDFs with good contrast.
</div>
""")
with gr.Row():
with gr.Column(scale=1):
# Upload section
gr.HTML('<div class="upload-section">')
pdf_input = gr.File(
label="π Upload PDF File",
file_types=[".pdf"],
file_count="single",
elem_id="pdf_upload"
)
gr.HTML('</div>')
# Process button
process_btn = gr.Button(
"π Extract Text",
variant="primary",
elem_classes=["process-btn"],
scale=2
)
# API section
gr.HTML("""
<div class="api-section">
<h3>π API Usage</h3>
<p><strong>Endpoint:</strong> <code>/predict</code></p>
<p><strong>Input:</strong> PDF file</p>
<p><strong>Output:</strong> Extracted text</p>
</div>
""")
with gr.Column(scale=2):
# Results section
gr.HTML('<div class="results-section">')
with gr.Tabs():
with gr.Tab("π Extracted Text"):
text_output = gr.Textbox(
label="Extracted Text",
lines=20,
elem_id="text_output",
placeholder="Extracted text will appear here..."
)
with gr.Tab("π JSON Data"):
json_output = gr.Code(
label="Detailed OCR Results (JSON)",
language="json",
elem_id="json_output"
)
with gr.Tab("π Statistics"):
stats_output = gr.Markdown(
label="Processing Statistics"
)
gr.HTML('</div>')
# Event handlers
process_btn.click(
fn=handle_pdf_ocr,
inputs=[pdf_input],
outputs=[text_output, json_output, stats_output],
api_name="predict"
)
# Auto-process on file upload
pdf_input.change(
fn=handle_pdf_ocr,
inputs=[pdf_input],
outputs=[text_output, json_output, stats_output],
api_name="predict"
)
if __name__ == "__main__":
port = int(os.getenv("PORT", "7860"))
demo.queue(max_size=6).launch(
server_name="0.0.0.0",
server_port=port,
share=False
)
|