flaskbot / app.py
markobinario's picture
Update app.py
05a9821 verified
raw
history blame
7.67 kB
import os
import gradio as gr
import pandas as pd
import numpy as np
from ai_chatbot import AIChatbot
from database_recommender import CourseRecommender
import warnings
import logging
# Suppress warnings
warnings.filterwarnings('ignore')
logging.getLogger('tensorflow').setLevel(logging.ERROR)
# Initialize components
try:
chatbot = AIChatbot()
print("βœ… Chatbot initialized successfully")
except Exception as e:
print(f"⚠️ Warning: Could not initialize chatbot: {e}")
chatbot = None
try:
recommender = CourseRecommender()
print("βœ… Recommender initialized successfully")
except Exception as e:
print(f"⚠️ Warning: Could not initialize recommender: {e}")
recommender = None
def chat_with_bot(message, history):
"""Handle chatbot interactions"""
if chatbot is None:
return "Sorry, the chatbot is not available at the moment. Please try again later."
if not message.strip():
return "Please enter a question."
# Get answer from chatbot
answer, confidence = chatbot.find_best_match(message)
# Get suggested questions
suggested_questions = chatbot.get_suggested_questions(message)
# Format response
response = f"**Answer:** {answer}\n\n"
response += f"**Confidence:** {confidence:.2f}\n\n"
if suggested_questions:
response += "**Suggested Questions:**\n"
for i, q in enumerate(suggested_questions, 1):
response += f"{i}. {q}\n"
return response
def get_course_recommendations(stanine, gwa, strand, hobbies):
"""Get course recommendations"""
if recommender is None:
return "Sorry, the recommendation system is not available at the moment. Please try again later."
try:
# Validate inputs
stanine = int(stanine)
gwa = float(gwa)
if not (1 <= stanine <= 9):
return "❌ Stanine score must be between 1 and 9"
if not (75 <= gwa <= 100):
return "❌ GWA must be between 75 and 100"
if not strand:
return "❌ Please select a strand"
if not hobbies.strip():
return "❌ Please enter your hobbies/interests"
# Get recommendations
recommendations = recommender.recommend_courses(
stanine=stanine,
gwa=gwa,
strand=strand,
hobbies=hobbies
)
if not recommendations:
return "No recommendations available at the moment."
# Format recommendations
response = f"## 🎯 Course Recommendations for You\n\n"
response += f"**Profile:** Stanine {stanine}, GWA {gwa}, {strand} Strand\n"
response += f"**Interests:** {hobbies}\n\n"
for i, rec in enumerate(recommendations, 1):
response += f"### {i}. {rec['code']} - {rec['name']}\n"
response += f"**Match Score:** {rec.get('rating', rec.get('probability', 0)):.1f}%\n\n"
return response
except Exception as e:
return f"❌ Error getting recommendations: {str(e)}"
def get_faqs():
"""Get available FAQs"""
if chatbot and chatbot.faqs:
faq_text = "## πŸ“š Frequently Asked Questions\n\n"
for i, faq in enumerate(chatbot.faqs, 1):
faq_text += f"**{i}. {faq['question']}**\n"
faq_text += f"{faq['answer']}\n\n"
return faq_text
return "No FAQs available at the moment."
def get_available_courses():
"""Get available courses"""
if recommender and recommender.courses:
course_text = "## πŸŽ“ Available Courses\n\n"
for code, name in recommender.courses.items():
course_text += f"**{code}** - {name}\n"
return course_text
return "No courses available at the moment."
# Create Gradio interface
with gr.Blocks(title="PSAU AI Chatbot & Course Recommender", theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
# πŸ€– PSAU AI Chatbot & Course Recommender
Welcome to the Pangasinan State University AI-powered admission assistant!
Get instant answers to your questions and receive personalized course recommendations.
"""
)
with gr.Tabs():
# Chatbot Tab
with gr.Tab("πŸ€– AI Chatbot"):
gr.Markdown("Ask me anything about university admissions, requirements, or general information!")
chatbot_interface = gr.ChatInterface(
fn=chat_with_bot,
title="PSAU Admission Assistant",
description="Type your question below and get instant answers!",
examples=[
"What are the admission requirements?",
"When is the application deadline?",
"How much is the tuition fee?",
"Do you offer scholarships?",
"What courses are available?"
],
cache_examples=True
)
# Course Recommender Tab
with gr.Tab("🎯 Course Recommender"):
gr.Markdown("Get personalized course recommendations based on your academic profile and interests!")
with gr.Row():
with gr.Column():
stanine_input = gr.Slider(
minimum=1, maximum=9, step=1, value=7,
label="Stanine Score (1-9)",
info="Your stanine score from entrance examination"
)
gwa_input = gr.Slider(
minimum=75, maximum=100, step=0.1, value=85.0,
label="GWA (75-100)",
info="Your General Weighted Average"
)
strand_input = gr.Dropdown(
choices=["STEM", "ABM", "HUMSS"],
value="STEM",
label="High School Strand",
info="Your senior high school strand"
)
hobbies_input = gr.Textbox(
label="Hobbies & Interests",
placeholder="e.g., programming, gaming, business, teaching, healthcare...",
info="Describe your interests and hobbies"
)
recommend_btn = gr.Button("Get Recommendations", variant="primary")
with gr.Column():
recommendations_output = gr.Markdown()
recommend_btn.click(
fn=get_course_recommendations,
inputs=[stanine_input, gwa_input, strand_input, hobbies_input],
outputs=recommendations_output
)
# Information Tab
with gr.Tab("πŸ“š Information"):
with gr.Row():
with gr.Column():
gr.Markdown("### FAQ Section")
faq_btn = gr.Button("Show FAQs")
faq_output = gr.Markdown()
faq_btn.click(fn=get_faqs, outputs=faq_output)
with gr.Column():
gr.Markdown("### Available Courses")
courses_btn = gr.Button("Show Courses")
courses_output = gr.Markdown()
courses_btn.click(fn=get_available_courses, outputs=courses_output)
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True
)