VLM-Lens / demo /lookup.py
marstin's picture
[martin-dev] add demo v1 test
d425e71
raw
history blame
6.35 kB
"""Model info lookup utilities."""
import os
from enum import Enum
from pathlib import Path
from typing import Tuple
from src.models.config import ModelSelection
REPO_ROOT = Path(__file__).resolve().parents[1]
SPECS_DIR = Path(os.getenv('MODEL_SPECS_DIR', REPO_ROOT / 'logs'))
# TODO: To store local model weights in the repo, also define:
# MODELS_DIR = Path(os.getenv('MODELS_DIR', REPO_ROOT / 'checkpoints'))
class ModelVariants(str, Enum):
"""Enum that contains all possible model variants."""
AYA_VISION_8B = 'aya-vision-8b'
BLIP2_3B = 'blip2-opt-2.7b'
COGVLM_17B = 'cogvlm-17b'
GLAMM_7B = 'glamm-7b'
INTERNLM_XC_25_7B = 'internlm-xcomposer2.5-7b'
INTERNVL_25_8B = 'internvl-2.5-8b'
JANUS_1B = 'janus-pro-1b'
LLAVA_15_7B = 'llava-1.5-7b'
MINICPM_O_26_8B = 'minicpm-o-2.6-8b'
MINICPM_V_20_3B = 'minicpm-v-2.0-2.8b'
MOLMO_7B = 'molmo-7b'
PALIGEMMA_3B = 'paligemma-3b'
PIXTRAL_12B = 'pixtral-12b'
PERCEPTION_LM_1B = 'perception-lm-1b'
QWENVL_20_2B = 'qwen2-vl-2b-instruct'
QWENVL_20_7B = 'qwen2-vl-7b-instruct'
# TODO: Add more models here as needed.
# ---- Mapping ----
# model_path: can be a local path or a HF repo id string
# model_spec: absolute Path to the .txt file (we'll return a repo-root-relative string)
_MODEL_MAPPING: dict[ModelVariants, dict[ModelSelection, str, str | Path]] = {
ModelVariants.AYA_VISION_8B: {
'model_arch': ModelSelection.AYA_VISION,
'model_path': 'CohereLabs/aya-vision-8b',
'model_spec': SPECS_DIR / 'CohereLabs' / 'aya-vision-8b.txt',
},
ModelVariants.BLIP2_3B: {
'model_arch': ModelSelection.BLIP2,
'model_path': 'Salesforce/blip2-opt-2.7b',
'model_spec': SPECS_DIR / 'Salesforce' / 'blip2-opt-2.7b.txt',
},
ModelVariants.COGVLM_17B: {
'model_arch': ModelSelection.COGVLM,
'model_path': 'THUDM/cogvlm-chat-hf',
'model_spec': SPECS_DIR / 'THUDM' / 'cogvlm-chat-hf.txt',
},
ModelVariants.GLAMM_7B: {
'model_arch': ModelSelection.GLAMM,
'model_path': 'MBZUAI/GLaMM-FullScope',
'model_spec': SPECS_DIR / 'MBZUAI' / 'GLaMM-FullScope.txt',
},
ModelVariants.INTERNLM_XC_25_7B: {
'model_arch': ModelSelection.INTERNLM_XC,
'model_path': 'internlm/internlm-xcomposer2d5-7b',
'model_spec': SPECS_DIR / 'internlm' / 'internlm-xcomposer2d5-7b.txt',
},
ModelVariants.INTERNVL_25_8B: {
'model_arch': ModelSelection.INTERNVL,
'model_path': 'OpenGVLab/InternVL2_5-8B',
'model_spec': SPECS_DIR / 'internvl' / 'InternVL2_5-8B.txt',
},
ModelVariants.JANUS_1B: {
'model_arch': ModelSelection.JANUS,
'model_path': 'deepseek-community/Janus-Pro-1B',
'model_spec': SPECS_DIR / 'deepseek-community' / 'Janus-Pro-1B.txt',
},
ModelVariants.LLAVA_15_7B: {
'model_arch': ModelSelection.LLAVA,
'model_path': 'llava-hf/llava-1.5-7b-hf',
'model_spec': SPECS_DIR / 'llava-hf' / 'llava-1.5-7b-hf.txt',
},
ModelVariants.MINICPM_O_26_8B: {
'model_arch': ModelSelection.MINICPM,
'model_path': 'openbmb/MiniCPM-o-2_6',
'model_spec': SPECS_DIR / 'openbmb' / 'MiniCPM-o-2_6.txt',
},
ModelVariants.MINICPM_V_20_3B: {
'model_arch': ModelSelection.MINICPM,
'model_path': 'compling/MiniCPM-V-2',
'model_spec': SPECS_DIR / 'wonderwind271' / 'MiniCPM-V-2.txt',
},
ModelVariants.MOLMO_7B: {
'model_arch': ModelSelection.MOLMO,
'model_path': 'allenai/Molmo-7B-D-0924',
'model_spec': SPECS_DIR / 'allenai' / 'Molmo-7B-D-0924.txt',
},
ModelVariants.PALIGEMMA_3B: {
'model_arch': ModelSelection.PALIGEMMA,
'model_path': 'google/paligemma-3b-mix-224',
'model_spec': SPECS_DIR / 'paligemma' / 'paligemma-3b.txt',
},
ModelVariants.PIXTRAL_12B: {
'model_arch': ModelSelection.PIXTRAL,
'model_path': 'mistralai/Pixtral-12B-2409',
'model_spec': SPECS_DIR / 'mistralai' / 'Pixtral-12B-2409.txt',
},
ModelVariants.PERCEPTION_LM_1B: {
'model_arch': ModelSelection.PLM,
'model_path': 'facebook/Perception-LM-1B',
'model_spec': SPECS_DIR / 'facebook' / 'Perception-LM-1B.txt',
},
ModelVariants.QWENVL_20_2B: {
'model_arch': ModelSelection.QWEN,
'model_path': 'Qwen/Qwen2-VL-2B-Instruct',
'model_spec': SPECS_DIR / 'Qwen' / 'Qwen2-VL-2B-Instruct.txt',
},
ModelVariants.QWENVL_20_7B: {
'model_arch': ModelSelection.QWEN,
'model_path': 'Qwen/Qwen2-VL-7B-Instruct',
'model_spec': SPECS_DIR / 'Qwen' / 'Qwen2-VL-7B-Instruct.txt',
},
# TODO: Add more models here as needed.
}
def _to_repo_relative(p: Path) -> str:
"""Convert a path to a repo-root–relative string if possible.
Args:
p (Path): The path to convert.
Returns:
str: `p` relative to ``REPO_ROOT`` if `p` is within it; otherwise the
absolute path as a string.
"""
try:
return str(p.resolve().relative_to(REPO_ROOT))
except ValueError:
return str(p)
def get_model_info(model_var: ModelVariants) -> Tuple[ModelSelection, str, str]:
"""Return the model path and spec link for a given selection.
Args:
model_var (ModelVariants): The model variant to look up.
Returns:
Tuple[ModelSelection, str, str]:
A triple of ``(model_selection, model_path, link_to_model_spec)`` where
`model_selection` is a ModelSelection enum entry,
`model_path` is an HF repo id or local path, and
`link_to_model_spec` is a repo-root-relative path to the spec ``.txt``.
Raises:
KeyError: If the provided `model` is unknown / not in the mapping.
FileNotFoundError: If the resolved spec file does not exist.
"""
try:
info = _MODEL_MAPPING[model_var]
except KeyError as e:
raise KeyError(f'Unknown model: {model_var!r}') from e
model_selection = ModelSelection(info['model_arch'])
model_path = str(info['model_path'])
spec_path = Path(info['model_spec']).resolve()
if not spec_path.exists():
raise FileNotFoundError(f'Spec file not found: {spec_path}')
return model_selection, model_path, _to_repo_relative(spec_path)