|
|
"""Helper functions from official huggingface library of InternVL.""" |
|
|
|
|
|
from typing import List, Optional, Tuple |
|
|
|
|
|
import torch |
|
|
import torchvision.transforms as T |
|
|
from PIL import Image |
|
|
from torchvision.transforms.functional import InterpolationMode |
|
|
|
|
|
IMAGENET_MEAN = (0.485, 0.456, 0.406) |
|
|
IMAGENET_STD = (0.229, 0.224, 0.225) |
|
|
|
|
|
|
|
|
def build_transform(input_size: Optional[int] = 448) -> T.Compose: |
|
|
"""Helper function that transform image. |
|
|
|
|
|
Args: |
|
|
input_size (int, optional): The input size. Defaults to 448. |
|
|
|
|
|
Returns: |
|
|
T.Compose: The composed transform. |
|
|
""" |
|
|
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD |
|
|
return T.Compose([ |
|
|
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), |
|
|
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), |
|
|
T.ToTensor(), |
|
|
T.Normalize(mean=MEAN, std=STD) |
|
|
]) |
|
|
|
|
|
|
|
|
def find_closest_aspect_ratio( |
|
|
aspect_ratio: float, target_ratios: List[Tuple[float, float]], |
|
|
width: int, height: int, image_size: int) -> Tuple[int, int]: |
|
|
"""Helper function that find closest aspect ratio. |
|
|
|
|
|
Args: |
|
|
aspect_ratio (float): The existing image aspect ratio. |
|
|
target_ratios (list): The target aspect ratios. |
|
|
width (int): The original image width. |
|
|
height (int): The original image height. |
|
|
image_size (int): The target image size. |
|
|
|
|
|
Returns: |
|
|
tuple: The closest aspect ratio. |
|
|
""" |
|
|
best_ratio_diff = float('inf') |
|
|
best_ratio = (1, 1) |
|
|
area = width * height |
|
|
for ratio in target_ratios: |
|
|
target_aspect_ratio = ratio[0] / ratio[1] |
|
|
ratio_diff = abs(aspect_ratio - target_aspect_ratio) |
|
|
if ratio_diff < best_ratio_diff: |
|
|
best_ratio_diff = ratio_diff |
|
|
best_ratio = ratio |
|
|
elif ratio_diff == best_ratio_diff: |
|
|
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: |
|
|
best_ratio = ratio |
|
|
return best_ratio |
|
|
|
|
|
|
|
|
def dynamic_preprocess( |
|
|
image: Image, min_num: Optional[int] = 1, max_num: Optional[int] = 12, |
|
|
image_size: Optional[int] = 448, use_thumbnail: Optional[bool] = False) -> List[Image]: |
|
|
"""Helper function. |
|
|
|
|
|
Args: |
|
|
image (Image): The input image. |
|
|
min_num (int, optional): The minimum number of image patches. Defaults to 1. |
|
|
max_num (int, optional): The maximum number of image patches. Defaults to 12. |
|
|
image_size (int, optional): The target image size. Defaults to 448. |
|
|
use_thumbnail (bool, optional): Whether to use thumbnail. Defaults to False. |
|
|
|
|
|
Returns: |
|
|
list: The processed images. |
|
|
""" |
|
|
orig_width, orig_height = image.size |
|
|
aspect_ratio = orig_width / orig_height |
|
|
|
|
|
|
|
|
target_ratios = { |
|
|
(i, j) |
|
|
for n in range(min_num, max_num + 1) |
|
|
for i in range(1, n + 1) |
|
|
for j in range(1, n + 1) |
|
|
if i * j <= max_num and i * j >= min_num |
|
|
} |
|
|
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) |
|
|
|
|
|
|
|
|
target_aspect_ratio = find_closest_aspect_ratio( |
|
|
aspect_ratio, target_ratios, orig_width, orig_height, image_size) |
|
|
|
|
|
|
|
|
target_width = image_size * target_aspect_ratio[0] |
|
|
target_height = image_size * target_aspect_ratio[1] |
|
|
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] |
|
|
|
|
|
|
|
|
resized_img = image.resize((target_width, target_height)) |
|
|
processed_images = [] |
|
|
for i in range(blocks): |
|
|
box = ( |
|
|
(i % (target_width // image_size)) * image_size, |
|
|
(i // (target_width // image_size)) * image_size, |
|
|
((i % (target_width // image_size)) + 1) * image_size, |
|
|
((i // (target_width // image_size)) + 1) * image_size |
|
|
) |
|
|
|
|
|
split_img = resized_img.crop(box) |
|
|
processed_images.append(split_img) |
|
|
assert len(processed_images) == blocks |
|
|
if use_thumbnail and len(processed_images) != 1: |
|
|
thumbnail_img = image.resize((image_size, image_size)) |
|
|
processed_images.append(thumbnail_img) |
|
|
return processed_images |
|
|
|
|
|
|
|
|
def load_image(image_file: str, input_size: Optional[int] = 448, max_num: Optional[int] = 12) -> torch.Tensor: |
|
|
"""Load image to pixel values. |
|
|
|
|
|
Args: |
|
|
image_file (str): The image file path. |
|
|
input_size (int, optional): The input size. Defaults to 448. |
|
|
max_num (int, optional): The max number of image patches. Defaults to 12. |
|
|
|
|
|
Returns: |
|
|
torch.Tensor: The corresponding pixel values. |
|
|
""" |
|
|
image = Image.open(image_file).convert('RGB') |
|
|
transform = build_transform(input_size=input_size) |
|
|
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) |
|
|
pixel_values = [transform(image) for image in images] |
|
|
pixel_values = torch.stack(pixel_values) |
|
|
return pixel_values |
|
|
|