marstin's picture
[martin-dev] add demo v1 test
d425e71
"""Helper functions from official huggingface library of InternVL."""
from typing import List, Optional, Tuple
import torch
import torchvision.transforms as T
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(input_size: Optional[int] = 448) -> T.Compose:
"""Helper function that transform image.
Args:
input_size (int, optional): The input size. Defaults to 448.
Returns:
T.Compose: The composed transform.
"""
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
return T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
def find_closest_aspect_ratio(
aspect_ratio: float, target_ratios: List[Tuple[float, float]],
width: int, height: int, image_size: int) -> Tuple[int, int]:
"""Helper function that find closest aspect ratio.
Args:
aspect_ratio (float): The existing image aspect ratio.
target_ratios (list): The target aspect ratios.
width (int): The original image width.
height (int): The original image height.
image_size (int): The target image size.
Returns:
tuple: The closest aspect ratio.
"""
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(
image: Image, min_num: Optional[int] = 1, max_num: Optional[int] = 12,
image_size: Optional[int] = 448, use_thumbnail: Optional[bool] = False) -> List[Image]:
"""Helper function.
Args:
image (Image): The input image.
min_num (int, optional): The minimum number of image patches. Defaults to 1.
max_num (int, optional): The maximum number of image patches. Defaults to 12.
image_size (int, optional): The target image size. Defaults to 448.
use_thumbnail (bool, optional): Whether to use thumbnail. Defaults to False.
Returns:
list: The processed images.
"""
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = {
(i, j)
for n in range(min_num, max_num + 1)
for i in range(1, n + 1)
for j in range(1, n + 1)
if i * j <= max_num and i * j >= min_num
}
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def load_image(image_file: str, input_size: Optional[int] = 448, max_num: Optional[int] = 12) -> torch.Tensor:
"""Load image to pixel values.
Args:
image_file (str): The image file path.
input_size (int, optional): The input size. Defaults to 448.
max_num (int, optional): The max number of image patches. Defaults to 12.
Returns:
torch.Tensor: The corresponding pixel values.
"""
image = Image.open(image_file).convert('RGB')
transform = build_transform(input_size=input_size)
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values