Log-Analysis-MultiAgent / src /evaluator /cti_bench_evaluator.py
minhan6559's picture
Upload 126 files
223ef32 verified
raw
history blame
39.2 kB
"""
CTI Bench Evaluation Script for Cybersecurity Retrieval System
This script evaluates the retrieval supervisor system against the CTI Bench dataset,
including both CTI-ATE (attack technique extraction) and CTI-MCQ (multiple choice questions).
"""
import os
import sys
import pandas as pd
import re
import json
import csv
from pathlib import Path
from typing import Dict, List, Tuple, Any, Optional
from datetime import datetime
from sklearn.metrics import f1_score, precision_score, recall_score, accuracy_score
import numpy as np
# Import your supervisor
from src.agents.retrieval_supervisor.supervisor import RetrievalSupervisor
class CTIBenchEvaluator:
"""Evaluator for CTI Bench dataset using the Retrieval Supervisor."""
def __init__(
self,
supervisor: Optional[RetrievalSupervisor],
dataset_dir: str = "cti_bench/datasets",
output_dir: str = "cti_bench/eval_output",
):
"""
Initialize the CTI Bench evaluator.
Args:
supervisor: RetrievalSupervisor instance (can be None for CSV processing)
dataset_dir: Directory containing CTI Bench datasets
output_dir: Directory to save evaluation results
"""
self.supervisor = supervisor
self.dataset_dir = Path(dataset_dir)
self.output_dir = Path(output_dir)
self.output_dir.mkdir(parents=True, exist_ok=True)
# Templates for queries
self.ate_query_template = """You are a cybersecurity expert specializing in cyber threat intelligence.
Extract all MITRE Enterprise attack patterns from the following text and map them to their corresponding MITRE technique IDs.
Provide reasoning for each identification.
Ensure the final line contains only the IDs for the main techniques, separated by commas, excluding any subtechnique IDs.
Example of the final line: T1071, T1560, T1547
Text:
{attack_description}
"""
def load_datasets(self) -> Tuple[pd.DataFrame, pd.DataFrame]:
"""Load CTI-ATE and CTI-MCQ datasets."""
try:
# Load CTI-ATE dataset
ate_path = self.dataset_dir / "cti-ate.tsv"
ate_df = pd.read_csv(ate_path, sep="\t")
print(f"Loaded CTI-ATE dataset: {len(ate_df)} samples")
# Load CTI-MCQ dataset
mcq_path = self.dataset_dir / "cti-mcq.tsv"
mcq_df = pd.read_csv(mcq_path, sep="\t")
print(f"Loaded CTI-MCQ dataset: {len(mcq_df)} samples")
return ate_df, mcq_df
except Exception as e:
print(f"Error loading datasets: {e}")
raise
def filter_dataset(self, df: pd.DataFrame, dataset_type: str) -> pd.DataFrame:
"""Filter dataset according to requirements."""
if dataset_type == "ate":
# Filter ATE: only Enterprise platform
filtered_df = df[df["Platform"] == "Enterprise"].copy()
print(
f"CTI-ATE filtered to Enterprise platform: {len(filtered_df)} samples"
)
elif dataset_type == "mcq":
# Filter MCQ: only samples with "techniques" in URL
filtered_df = df[df["URL"].str.contains("techniques", na=False)].copy()
print(f"CTI-MCQ filtered to technique URLs: {len(filtered_df)} samples")
else:
raise ValueError(f"Invalid dataset type: {dataset_type}")
return filtered_df
def extract_technique_ids_from_response(self, response: str) -> List[str]:
"""
Extract MITRE technique IDs from the response text.
Simplified version: only checks the final line.
Args:
response: Response text from the supervisor
Returns:
List of extracted technique IDs, or empty list if not successful
"""
# Get the final line
lines = response.strip().split("\n")
if not lines:
return []
final_line = lines[-1].strip()
if not final_line:
return []
# Pattern to match MITRE technique IDs (T followed by 4 digits, optionally followed by .XXX)
technique_pattern = r"\bT\d{4}(?:\.\d{3})?\b"
# Check if final line contains only technique IDs, commas, and spaces
techniques_in_line = re.findall(technique_pattern, final_line)
if not techniques_in_line:
return []
# Check if the line is only technique IDs, commas, and spaces
clean_line = re.sub(r"[T\d.,\s]", "", final_line)
if len(clean_line) > 0:
return [] # Not successful - line contains other characters
# Return all technique IDs from the final line (excluding subtechniques)
return [t for t in techniques_in_line if "." not in t]
def extract_mcq_answer_from_response(self, response: str) -> str:
"""
Extract the final answer (A, B, C, or D) from MCQ response.
Args:
response: Response text from the supervisor
Returns:
Extracted answer letter or empty string if not found
"""
# Look for single letter answers at the end of lines
lines = response.strip().split("\n")
# Check the last few lines for a single letter answer
for line in reversed(lines[-3:]):
line = line.strip()
if line in ["A", "B", "C", "D"]:
return line
# Check for patterns like "Answer: A" or "The answer is B"
match = re.search(r"\b([ABCD])\b(?:\s*[.)]?)\s*$", line)
if match:
return match.group(1)
# Fallback: search the entire response for answer patterns
answer_patterns = [
r"(?:answer|choice|option).*?([ABCD])",
r"\b([ABCD])\b(?:\s*[.)]?)\s*$",
r"^([ABCD])$",
]
for pattern in answer_patterns:
matches = re.findall(pattern, response, re.IGNORECASE | re.MULTILINE)
if matches:
return matches[-1].upper()
return "" # No answer found
def evaluate_ate_dataset(self, ate_df: pd.DataFrame) -> List[Dict[str, Any]]:
"""
Evaluate the CTI-ATE dataset.
Args:
ate_df: Filtered CTI-ATE dataset
Returns:
List of evaluation results
"""
results = []
print(f"\n{'='*60}")
print("EVALUATING CTI-ATE DATASET")
print(f"{'='*60}")
for i, (idx, row) in enumerate(ate_df.iterrows()):
print(f"Processing ATE sample {i + 1}/{len(ate_df)}: {row['URL']}")
# Retry up to 3 times for each sample
max_retries = 3
success = False
result = None
for attempt in range(max_retries):
try:
print(f" Attempt {attempt + 1}/{max_retries}")
# Create query from template
query = self.ate_query_template.format(
attack_description=row["Description"]
)
# Get response from supervisor
response = self.supervisor.invoke_direct_query(query, trace=False)
# Extract final message content from LangGraph result
if "messages" in response and response["messages"]:
# Get the last AI message from the conversation
last_message = None
for msg in reversed(response["messages"]):
try:
if (
hasattr(msg, "content")
and hasattr(msg, "type")
and msg.type == "ai"
):
last_message = msg
break
except (AttributeError, TypeError) as e:
# Handle cases where msg.type might be an int instead of string
print(f" Warning: Error accessing message type: {e}")
continue
if last_message:
response_text = last_message.content
else:
# Fallback: get the last message regardless of type
try:
response_text = response["messages"][-1].content
except (AttributeError, TypeError) as e:
print(
f" Warning: Error accessing last message content: {e}"
)
response_text = str(response["messages"][-1])
else:
response_text = str(response)
# Extract technique IDs from response
predicted_techniques = self.extract_technique_ids_from_response(
response_text
)
# Parse ground truth
gt_techniques = [
t.strip() for t in row["GT"].split(",") if t.strip()
]
# Check if extraction was successful
if len(predicted_techniques) > 0:
success = True
result = {
"url": row["URL"],
"description": row["Description"],
"ground_truth": gt_techniques,
"predicted": predicted_techniques,
"response_text": response_text,
"success": True,
"attempts": attempt + 1,
}
print(f" GT: {gt_techniques}")
print(f" Predicted: {predicted_techniques}")
print(f" Success: {result['success']} (attempt {attempt + 1})")
break
else:
print(f" No techniques extracted on attempt {attempt + 1}")
if attempt == max_retries - 1:
# Final attempt failed
result = {
"url": row["URL"],
"description": row["Description"],
"ground_truth": gt_techniques,
"predicted": [],
"response_text": response_text,
"success": False,
"attempts": max_retries,
}
print(f" GT: {gt_techniques}")
print(f" Predicted: {predicted_techniques}")
print(
f" Success: {result['success']} (all attempts failed)"
)
print(f" Response text: {response_text}")
except Exception as e:
print(f" Error processing sample (attempt {attempt + 1}): {e}")
if attempt == max_retries - 1:
# Final attempt failed
result = {
"url": row["URL"],
"description": row["Description"],
"ground_truth": [
t.strip() for t in row["GT"].split(",") if t.strip()
],
"predicted": [],
"response_text": f"Error: {str(e)}",
"success": False,
"attempts": max_retries,
}
print(f" Success: {result['success']} (all attempts failed)")
results.append(result)
return results
def evaluate_mcq_dataset(self, mcq_df: pd.DataFrame) -> List[Dict[str, Any]]:
"""
Evaluate the CTI-MCQ dataset.
Args:
mcq_df: Filtered CTI-MCQ dataset
Returns:
List of evaluation results
"""
results = []
print(f"\n{'='*60}")
print("EVALUATING CTI-MCQ DATASET")
print(f"{'='*60}")
for i, (idx, row) in enumerate(mcq_df.iterrows()):
print(f"Processing MCQ sample {i + 1}/{len(mcq_df)}: {row['URL']}")
try:
# Use the provided prompt
query = row["Prompt"]
# Get response from supervisor
response = self.supervisor.invoke_direct_query(query, trace=False)
# Extract final message content from LangGraph result
if "messages" in response and response["messages"]:
# Get the last AI message from the conversation
last_message = None
for msg in reversed(response["messages"]):
try:
if (
hasattr(msg, "content")
and hasattr(msg, "type")
and msg.type == "ai"
):
last_message = msg
break
except (AttributeError, TypeError) as e:
# Handle cases where msg.type might be an int instead of string
print(f" Warning: Error accessing message type: {e}")
continue
if last_message:
response_text = last_message.content
else:
# Fallback: get the last message regardless of type
try:
response_text = response["messages"][-1].content
except (AttributeError, TypeError) as e:
print(
f" Warning: Error accessing last message content: {e}"
)
response_text = str(response["messages"][-1])
else:
response_text = str(response)
# Extract answer from response
predicted_answer = self.extract_mcq_answer_from_response(response_text)
# Ground truth answer
gt_answer = row["GT"].strip().upper()
# Store result
result = {
"url": row["URL"],
"prompt": row["Prompt"],
"ground_truth": gt_answer,
"predicted": predicted_answer,
"response_text": response_text,
"correct": predicted_answer == gt_answer,
"success": len(predicted_answer) > 0,
}
results.append(result)
print(f" GT: {gt_answer}")
print(f" Predicted: {predicted_answer}")
print(f" Correct: {result['correct']}")
except Exception as e:
print(f" Error processing sample: {e}")
result = {
"url": row["URL"],
"prompt": row["Prompt"],
"ground_truth": row["GT"].strip().upper(),
"predicted": "",
"response_text": f"Error: {str(e)}",
"correct": False,
"success": False,
}
results.append(result)
return results
def calculate_ate_metrics(self, results: List[Dict[str, Any]]) -> Dict[str, float]:
"""
Calculate evaluation metrics for ATE dataset using sample-level metrics.
Args:
results: List of ATE evaluation results
Returns:
Dictionary of calculated metrics
"""
if not results:
return {}
# Collect all unique technique IDs
all_techniques = set()
for result in results:
all_techniques.update(result["ground_truth"])
all_techniques.update(result["predicted"])
all_techniques = sorted(list(all_techniques))
# Sample-level metrics (macro = average across samples)
sample_precisions = []
sample_recalls = []
sample_f1s = []
for result in results:
gt_set = set(result["ground_truth"])
pred_set = set(result["predicted"])
# Calculate precision, recall, and F1 for this sample
if len(pred_set) == 0:
precision = 0.0
else:
precision = len(gt_set.intersection(pred_set)) / len(pred_set)
if len(gt_set) == 0:
recall = 1.0 if len(pred_set) == 0 else 0.0
else:
recall = len(gt_set.intersection(pred_set)) / len(gt_set)
if precision + recall == 0:
f1 = 0.0
else:
f1 = 2 * (precision * recall) / (precision + recall)
sample_precisions.append(precision)
sample_recalls.append(recall)
sample_f1s.append(f1)
# Calculate macro-averaged metrics (average across samples)
macro_precision = np.mean(sample_precisions)
macro_recall = np.mean(sample_recalls)
macro_f1 = np.mean(sample_f1s)
# Sample-level micro metrics (aggregate TP, FP, FN across all samples)
total_tp = 0
total_fp = 0
total_fn = 0
for result in results:
gt_set = set(result["ground_truth"])
pred_set = set(result["predicted"])
tp = len(gt_set.intersection(pred_set))
fp = len(pred_set - gt_set)
fn = len(gt_set - pred_set)
total_tp += tp
total_fp += fp
total_fn += fn
# Calculate micro-averaged metrics
if total_tp + total_fp == 0:
micro_precision = 0.0
else:
micro_precision = total_tp / (total_tp + total_fp)
if total_tp + total_fn == 0:
micro_recall = 0.0
else:
micro_recall = total_tp / (total_tp + total_fn)
if micro_precision + micro_recall == 0:
micro_f1 = 0.0
else:
micro_f1 = (
2 * (micro_precision * micro_recall) / (micro_precision + micro_recall)
)
# Additional metrics
exact_match = sum(
1 for r in results if set(r["ground_truth"]) == set(r["predicted"])
) / len(results)
success_rate = sum(1 for r in results if r["success"]) / len(results)
return {
# Primary metrics (sample-level)
"macro_f1": macro_f1,
"macro_precision": macro_precision,
"macro_recall": macro_recall,
"micro_f1": micro_f1,
"micro_precision": micro_precision,
"micro_recall": micro_recall,
# Additional metrics
"exact_match_ratio": exact_match,
"success_rate": success_rate,
"total_samples": len(results),
"total_techniques": len(all_techniques),
}
def calculate_mcq_metrics(self, results: List[Dict[str, Any]]) -> Dict[str, float]:
"""
Calculate evaluation metrics for MCQ dataset.
Args:
results: List of MCQ evaluation results
Returns:
Dictionary of calculated metrics
"""
if not results:
return {}
# Prepare labels for sklearn metrics
y_true = []
y_pred = []
for result in results:
if result["success"]: # Only include samples where we got a prediction
y_true.append(result["ground_truth"])
y_pred.append(result["predicted"])
if not y_true:
return {
"accuracy": 0.0,
"f1_macro": 0.0,
"f1_micro": 0.0,
"precision_macro": 0.0,
"recall_macro": 0.0,
"success_rate": 0.0,
"total_samples": len(results),
"answered_samples": 0,
}
# Calculate metrics
accuracy = accuracy_score(y_true, y_pred)
f1_macro = f1_score(y_true, y_pred, average="macro", zero_division=0)
f1_micro = f1_score(y_true, y_pred, average="micro", zero_division=0)
precision_macro = precision_score(
y_true, y_pred, average="macro", zero_division=0
)
recall_macro = recall_score(y_true, y_pred, average="macro", zero_division=0)
success_rate = sum(1 for r in results if r["success"]) / len(results)
return {
"accuracy": accuracy,
"f1_macro": f1_macro,
"f1_micro": f1_micro,
"precision_macro": precision_macro,
"recall_macro": recall_macro,
"success_rate": success_rate,
"total_samples": len(results),
"answered_samples": len(y_true),
}
def save_results_to_csv(
self, results: List[Dict[str, Any]], dataset_type: str, model_name: str = None
):
"""
Save evaluation results to CSV file.
Args:
results: Evaluation results
dataset_type: Type of dataset ("ate" or "mcq")
model_name: Model name (if None, extracted from supervisor)
"""
if model_name is None:
if self.supervisor is not None:
model_name = self.supervisor.llm_model.split(":")[-1]
else:
model_name = "unknown_model"
# Sanitize model name for filename
sanitized_model_name = self._sanitize_filename(model_name)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
if dataset_type == "ate":
csv_path = (
self.output_dir / f"cti-ate_{sanitized_model_name}_{timestamp}.csv"
)
with open(csv_path, "w", newline="", encoding="utf-8") as f:
writer = csv.writer(f)
writer.writerow(["Description", "GT", "Predicted"])
for result in results:
description = result["description"]
gt = ", ".join(result["ground_truth"])
predicted = ", ".join(result["predicted"])
writer.writerow([description, gt, predicted])
print(f"ATE results saved to: {csv_path}")
elif dataset_type == "mcq":
csv_path = (
self.output_dir / f"cti-mcq_{sanitized_model_name}_{timestamp}.csv"
)
with open(csv_path, "w", newline="", encoding="utf-8") as f:
writer = csv.writer(f)
writer.writerow(["Prompt", "GT", "Predicted"])
for result in results:
prompt = result["prompt"]
writer.writerow(
[prompt, result["ground_truth"], result["predicted"]]
)
print(f"MCQ results saved to: {csv_path}")
else:
raise ValueError(f"Invalid dataset type: {dataset_type}")
def save_evaluation_summary(
self, metrics: Dict[str, float], dataset_type: str, model_name: str = None
):
"""
Save evaluation summary to JSON file.
Args:
metrics: Evaluation metrics
dataset_type: Type of dataset ("ate" or "mcq")
model_name: Model name (if None, extracted from supervisor)
"""
if model_name is None:
if self.supervisor is not None:
model_name = self.supervisor.llm_model.split(":")[-1]
else:
model_name = "unknown_model"
# Sanitize model name for filename
sanitized_model_name = self._sanitize_filename(model_name)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
summary = {
"evaluation_timestamp": datetime.now().isoformat(),
"dataset_type": dataset_type,
"model_name": model_name, # Keep original model name in JSON content
"metrics": metrics,
}
summary_path = (
self.output_dir
/ f"evaluation_summary_{dataset_type}_{sanitized_model_name}_{timestamp}.json"
)
with open(summary_path, "w", encoding="utf-8") as f:
json.dump(summary, f, indent=2)
print(f"Evaluation summary saved to: {summary_path}")
def _extract_dataset_type_from_filename(self, filename: str) -> str:
"""
Extract dataset type from CSV filename.
Args:
filename: The filename (without extension) to extract dataset type from
Returns:
Dataset type ("ate" or "mcq")
"""
if "cti-ate" in filename.lower():
return "ate"
elif "cti-mcq" in filename.lower():
return "mcq"
else:
raise ValueError(f"Cannot determine dataset type from filename: {filename}")
def _sanitize_filename(self, filename: str) -> str:
"""
Sanitize a string to be safe for use in filenames.
Args:
filename: The string to sanitize
Returns:
Sanitized filename string
"""
import re
# Replace invalid characters with dashes
sanitized = re.sub(r'[/\\:*?"<>|]', "-", filename)
# Remove any leading/trailing dashes and multiple consecutive dashes
sanitized = re.sub(r"-+", "-", sanitized).strip("-")
return sanitized if sanitized else "unknown"
def read_csv_results(
self, csv_path: str, dataset_type: str
) -> List[Dict[str, Any]]:
"""
Read existing CSV results and convert to evaluation results format.
Args:
csv_path: Path to the CSV file
dataset_type: Type of dataset ("ate" or "mcq")
Returns:
List of evaluation results in the same format as evaluate_*_dataset methods
"""
try:
df = pd.read_csv(csv_path)
results = []
if dataset_type == "ate":
# Expected columns: Description, GT, Predicted
for _, row in df.iterrows():
# Parse ground truth and predicted techniques
gt_techniques = [
t.strip() for t in str(row["GT"]).split(",") if t.strip()
]
predicted_techniques = [
t.strip() for t in str(row["Predicted"]).split(",") if t.strip()
]
result = {
"url": f"csv_row_{len(results)}", # Placeholder URL
"description": str(row["Description"]),
"ground_truth": gt_techniques,
"predicted": predicted_techniques,
"response_text": f"GT: {', '.join(gt_techniques)}, Predicted: {', '.join(predicted_techniques)}",
"success": len(predicted_techniques) > 0,
"attempts": 1,
}
results.append(result)
elif dataset_type == "mcq":
# Expected columns: Prompt, GT, Predicted
for _, row in df.iterrows():
gt_answer = str(row["GT"]).strip().upper()
predicted_answer = str(row["Predicted"]).strip().upper()
result = {
"url": f"csv_row_{len(results)}", # Placeholder URL
"prompt": str(row["Prompt"]),
"ground_truth": gt_answer,
"predicted": predicted_answer,
"response_text": f"GT: {gt_answer}, Predicted: {predicted_answer}",
"correct": predicted_answer == gt_answer,
"success": len(predicted_answer) > 0,
}
results.append(result)
else:
raise ValueError(f"Invalid dataset type: {dataset_type}")
print(f"Successfully read {len(results)} results from {csv_path}")
return results
except Exception as e:
print(f"Error reading CSV file {csv_path}: {e}")
raise
def calculate_metrics_from_csv(
self, csv_path: str, model_name: str = None
) -> Dict[str, Any]:
"""
Read existing CSV results, calculate metrics, and save summary.
Args:
csv_path: Path to the CSV file
model_name: Model name to use in summary (if None, extracted from filename)
Returns:
Dictionary containing results and metrics
"""
# Extract dataset type and model name from filename
filename = Path(csv_path).stem
dataset_type = self._extract_dataset_type_from_filename(filename)
if model_name is None:
# Try to extract model name from filename (e.g., cti-ate_gemini-2.0-flash_20251024_193022)
parts = filename.split("_")
if len(parts) >= 2:
model_name = parts[1] # Second part should be model name
else:
model_name = "unknown_model"
print(f"Processing CSV file: {csv_path}")
print(f"Dataset type: {dataset_type} (extracted from filename)")
print(f"Model name: {model_name}")
# Read results from CSV
results = self.read_csv_results(csv_path, dataset_type)
# Calculate metrics
if dataset_type == "ate":
metrics = self.calculate_ate_metrics(results)
elif dataset_type == "mcq":
metrics = self.calculate_mcq_metrics(results)
else:
raise ValueError(f"Invalid dataset type: {dataset_type}")
# Save evaluation summary
sanitized_model_name = self._sanitize_filename(model_name)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
summary = {
"evaluation_timestamp": datetime.now().isoformat(),
"dataset_type": dataset_type,
"model_name": model_name, # Keep original model name in JSON content
"source_csv": csv_path,
"metrics": metrics,
}
summary_path = (
self.output_dir
/ f"evaluation_summary_{dataset_type}_{sanitized_model_name}_{timestamp}.json"
)
with open(summary_path, "w", encoding="utf-8") as f:
json.dump(summary, f, indent=2)
print(f"Evaluation summary saved to: {summary_path}")
# Print summary of results
print(f"\n{'='*60}")
print(f"METRICS FROM CSV: {dataset_type.upper()}")
print(f"{'='*60}")
if dataset_type == "ate":
print(f"Macro F1: {metrics.get('macro_f1', 0.0):.3f}")
print(f"Macro Precision: {metrics.get('macro_precision', 0.0):.3f}")
print(f"Macro Recall: {metrics.get('macro_recall', 0.0):.3f}")
print(f"Micro F1: {metrics.get('micro_f1', 0.0):.3f}")
print(f"Exact Match: {metrics.get('exact_match_ratio', 0.0):.3f}")
print(f"Success Rate: {metrics.get('success_rate', 0.0):.3f}")
print(f"Total Samples: {metrics.get('total_samples', 0)}")
elif dataset_type == "mcq":
print(f"Accuracy: {metrics.get('accuracy', 0.0):.3f}")
print(f"F1 Macro: {metrics.get('f1_macro', 0.0):.3f}")
print(f"Success Rate: {metrics.get('success_rate', 0.0):.3f}")
print(f"Total Samples: {metrics.get('total_samples', 0)}")
print(f"{'='*60}")
return {
"results": results,
"metrics": metrics,
"summary_path": str(summary_path),
}
def run_full_evaluation(self) -> Dict[str, Any]:
"""
Run the complete evaluation pipeline.
Returns:
Dictionary containing all evaluation results and metrics
"""
print("Starting CTI Bench evaluation...")
print(f"Output directory: {self.output_dir}")
# Load and filter datasets
ate_df, mcq_df = self.load_datasets()
ate_filtered = self.filter_dataset(ate_df, "ate")
mcq_filtered = self.filter_dataset(mcq_df, "mcq")
# Evaluate datasets and calculate metrics for ATE
ate_results = self.evaluate_ate_dataset(ate_filtered)
ate_metrics = self.calculate_ate_metrics(ate_results)
# Evaluate datasets and calculate metrics for MCQ
mcq_results = self.evaluate_mcq_dataset(mcq_filtered)
mcq_metrics = self.calculate_mcq_metrics(mcq_results)
# Save results to CSV files
self.save_results_to_csv(ate_results, "ate")
self.save_results_to_csv(mcq_results, "mcq")
self.save_evaluation_summary(ate_metrics, "ate")
self.save_evaluation_summary(mcq_metrics, "mcq")
# Print summary of evaluation results
print(f"\n{'='*60}")
print("EVALUATION SUMMARY")
print(f"{'='*60}")
print(f"CTI-ATE Results:")
print(f" Macro F1: {ate_metrics.get('macro_f1', 0.0):.3f}")
print(f" Macro Precision: {ate_metrics.get('macro_precision', 0.0):.3f}")
print(f" Macro Recall: {ate_metrics.get('macro_recall', 0.0):.3f}")
print(f" Micro F1: {ate_metrics.get('micro_f1', 0.0):.3f}")
print(f" Exact Match: {ate_metrics.get('exact_match_ratio', 0.0):.3f}")
print(f" Success Rate: {ate_metrics.get('success_rate', 0.0):.3f}")
print(f" Total Samples: {ate_metrics.get('total_samples', 0)}")
print(f"\nCTI-MCQ Results:")
print(f" Accuracy: {mcq_metrics.get('accuracy', 0.0):.3f}")
print(f" F1 Macro: {mcq_metrics.get('f1_macro', 0.0):.3f}")
print(f" Success Rate: {mcq_metrics.get('success_rate', 0.0):.3f}")
print(f" Total Samples: {mcq_metrics.get('total_samples', 0)}")
print(f"{'='*60}")
return {
"ate_results": ate_results,
"mcq_results": mcq_results,
"ate_metrics": ate_metrics,
"mcq_metrics": mcq_metrics,
}
def run_ate_evaluation(self) -> Dict[str, Any]:
"""
Run evaluation on ATE dataset only.
Returns:
Dictionary containing ATE evaluation results and metrics
"""
print("Starting CTI-ATE evaluation...")
print(f"Output directory: {self.output_dir}")
# Load and filter datasets
ate_df, mcq_df = self.load_datasets()
ate_filtered = self.filter_dataset(ate_df, "ate")
# Evaluate ATE dataset and calculate metrics
ate_results = self.evaluate_ate_dataset(ate_filtered)
ate_metrics = self.calculate_ate_metrics(ate_results)
# Save results to CSV files (ATE only)
self.save_results_to_csv(ate_results, "ate")
self.save_evaluation_summary(ate_metrics, "ate")
# Print summary of evaluation results
print(f"\n{'='*60}")
print("CTI-ATE EVALUATION SUMMARY")
print(f"{'='*60}")
print(f"CTI-ATE Results:")
print(f" Macro F1: {ate_metrics.get('macro_f1', 0.0):.3f}")
print(f" Macro Precision: {ate_metrics.get('macro_precision', 0.0):.3f}")
print(f" Macro Recall: {ate_metrics.get('macro_recall', 0.0):.3f}")
print(f" Micro F1: {ate_metrics.get('micro_f1', 0.0):.3f}")
print(f" Exact Match: {ate_metrics.get('exact_match_ratio', 0.0):.3f}")
print(f" Success Rate: {ate_metrics.get('success_rate', 0.0):.3f}")
print(f" Total Samples: {ate_metrics.get('total_samples', 0)}")
print(f"{'='*60}")
return {
"ate_results": ate_results,
"ate_metrics": ate_metrics,
}
def run_mcq_evaluation(self) -> Dict[str, Any]:
"""
Run evaluation on MCQ dataset only.
Returns:
Dictionary containing MCQ evaluation results and metrics
"""
print("Starting CTI-MCQ evaluation...")
print(f"Output directory: {self.output_dir}")
# Load and filter datasets
ate_df, mcq_df = self.load_datasets()
mcq_filtered = self.filter_dataset(mcq_df, "mcq")
# Evaluate MCQ dataset and calculate metrics
mcq_results = self.evaluate_mcq_dataset(mcq_filtered)
mcq_metrics = self.calculate_mcq_metrics(mcq_results)
# Save results to CSV files (MCQ only)
self.save_results_to_csv(mcq_results, "mcq")
self.save_evaluation_summary(mcq_metrics, "mcq")
# Print summary of evaluation results
print(f"\n{'='*60}")
print("CTI-MCQ EVALUATION SUMMARY")
print(f"{'='*60}")
print(f"CTI-MCQ Results:")
print(f" Accuracy: {mcq_metrics.get('accuracy', 0.0):.3f}")
print(f" F1 Macro: {mcq_metrics.get('f1_macro', 0.0):.3f}")
print(f" Success Rate: {mcq_metrics.get('success_rate', 0.0):.3f}")
print(f" Total Samples: {mcq_metrics.get('total_samples', 0)}")
print(f"{'='*60}")
return {
"mcq_results": mcq_results,
"mcq_metrics": mcq_metrics,
}
def main():
"""Main function to run the evaluation."""
import argparse
parser = argparse.ArgumentParser(
description="Evaluate Retrieval Supervisor on CTI Bench dataset"
)
parser.add_argument(
"--dataset-dir",
default="cti_bench/datasets",
help="Directory containing CTI Bench datasets",
)
parser.add_argument(
"--output-dir",
default="cti_bench/eval_output",
help="Directory to save evaluation results",
)
parser.add_argument(
"--kb-path",
default="./cyber_knowledge_base",
help="Path to cyber knowledge base",
)
parser.add_argument(
"--llm-model", default="google_genai:gemini-2.0-flash", help="LLM model to use"
)
parser.add_argument(
"--max-samples",
type=int,
help="Maximum number of samples to evaluate (for testing)",
)
args = parser.parse_args()
try:
# Initialize supervisor
print("Initializing Retrieval Supervisor...")
supervisor = RetrievalSupervisor(
llm_model=args.llm_model, kb_path=args.kb_path, max_iterations=3
)
# Initialize evaluator
evaluator = CTIBenchEvaluator(
supervisor=supervisor,
dataset_dir=args.dataset_dir,
output_dir=args.output_dir,
)
# Run evaluation
results = evaluator.run_full_evaluation()
print("Evaluation completed successfully!")
except Exception as e:
print(f"Evaluation failed: {e}")
import traceback
traceback.print_exc()
if __name__ == "__main__":
main()