Spaces:
Running
Running
File size: 7,202 Bytes
c1bee18 c40f3d0 c1bee18 c40f3d0 c1bee18 c40f3d0 c1bee18 c40f3d0 c1bee18 c40f3d0 c1bee18 c40f3d0 c1bee18 c40f3d0 c1bee18 c40f3d0 c1bee18 c40f3d0 c1bee18 c40f3d0 c1bee18 c40f3d0 c1bee18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
"""
Image generation functionality handler for HF-Inferoxy AI Hub.
Handles text-to-image generation with multiple providers.
"""
import os
import time
import threading
from concurrent.futures import ThreadPoolExecutor, TimeoutError as FutureTimeoutError
from huggingface_hub import InferenceClient
from huggingface_hub.errors import HfHubHTTPError
from requests.exceptions import ConnectionError, Timeout, RequestException
from hf_token_utils import get_proxy_token, report_token_status
from utils import (
IMAGE_CONFIG,
validate_proxy_key,
format_error_message,
format_success_message
)
# Timeout configuration for image generation
IMAGE_GENERATION_TIMEOUT = 300 # 5 minutes max for image generation
def validate_dimensions(width, height):
"""Validate that dimensions are divisible by 8 (required by most diffusion models)"""
if width % 8 != 0 or height % 8 != 0:
return False, "Width and height must be divisible by 8"
return True, ""
def generate_image(
prompt: str,
model_name: str,
provider: str,
negative_prompt: str = "",
width: int = IMAGE_CONFIG["width"],
height: int = IMAGE_CONFIG["height"],
num_inference_steps: int = IMAGE_CONFIG["num_inference_steps"],
guidance_scale: float = IMAGE_CONFIG["guidance_scale"],
seed: int = IMAGE_CONFIG["seed"],
):
"""
Generate an image using the specified model and provider through HF-Inferoxy.
"""
# Validate proxy API key
is_valid, error_msg = validate_proxy_key()
if not is_valid:
return None, error_msg
proxy_api_key = os.getenv("PROXY_KEY")
token_id = None
try:
# Get token from HF-Inferoxy proxy server with timeout handling
print(f"π Image: Requesting token from proxy...")
token, token_id = get_proxy_token(api_key=proxy_api_key)
print(f"β
Image: Got token: {token_id}")
print(f"π¨ Image: Using model='{model_name}', provider='{provider}'")
# Create client with specified provider
client = InferenceClient(
provider=provider,
api_key=token
)
print(f"π Image: Client created, preparing generation params...")
# Prepare generation parameters
generation_params = {
"model": model_name,
"prompt": prompt,
"width": width,
"height": height,
"num_inference_steps": num_inference_steps,
"guidance_scale": guidance_scale,
}
# Add optional parameters if provided
if negative_prompt:
generation_params["negative_prompt"] = negative_prompt
if seed != -1:
generation_params["seed"] = seed
print(f"π Image: Dimensions: {width}x{height}, steps: {num_inference_steps}, guidance: {guidance_scale}")
print(f"π‘ Image: Making generation request with {IMAGE_GENERATION_TIMEOUT}s timeout...")
# Create generation function for timeout handling
def generate_image_task():
return client.text_to_image(**generation_params)
# Execute with timeout using ThreadPoolExecutor
with ThreadPoolExecutor(max_workers=1) as executor:
future = executor.submit(generate_image_task)
try:
# Generate image with timeout
image = future.result(timeout=IMAGE_GENERATION_TIMEOUT)
except FutureTimeoutError:
future.cancel() # Cancel the running task
raise TimeoutError(f"Image generation timed out after {IMAGE_GENERATION_TIMEOUT} seconds")
print(f"πΌοΈ Image: Generation completed! Image type: {type(image)}")
# Report successful token usage
if token_id:
report_token_status(token_id, "success", api_key=proxy_api_key)
return image, format_success_message("Image generated", f"using {model_name} on {provider}")
except ConnectionError as e:
# Handle proxy connection errors
error_msg = f"Cannot connect to HF-Inferoxy server: {str(e)}"
print(f"π Image connection error: {error_msg}")
if token_id:
report_token_status(token_id, "error", error_msg, api_key=proxy_api_key)
return None, format_error_message("Connection Error", "Unable to connect to the proxy server. Please check if it's running.")
except TimeoutError as e:
# Handle timeout errors
error_msg = f"Image generation timed out: {str(e)}"
print(f"β° Image timeout: {error_msg}")
if token_id:
report_token_status(token_id, "error", error_msg, api_key=proxy_api_key)
return None, format_error_message("Timeout Error", f"Image generation took too long (>{IMAGE_GENERATION_TIMEOUT//60} minutes). Try reducing image size or steps.")
except HfHubHTTPError as e:
# Handle HuggingFace API errors
error_msg = str(e)
print(f"π€ Image HF error: {error_msg}")
if token_id:
report_token_status(token_id, "error", error_msg, api_key=proxy_api_key)
# Provide more user-friendly error messages
if "401" in error_msg:
return None, format_error_message("Authentication Error", "Invalid or expired API token. The proxy will provide a new token on retry.")
elif "402" in error_msg:
return None, format_error_message("Quota Exceeded", "API quota exceeded. The proxy will try alternative providers.")
elif "429" in error_msg:
return None, format_error_message("Rate Limited", "Too many requests. Please wait a moment and try again.")
elif "content policy" in error_msg.lower() or "safety" in error_msg.lower():
return None, format_error_message("Content Policy", "Image prompt was rejected by content policy. Please try a different prompt.")
else:
return None, format_error_message("HuggingFace API Error", error_msg)
except Exception as e:
# Handle all other errors
error_msg = str(e)
print(f"β Image unexpected error: {error_msg}")
if token_id:
report_token_status(token_id, "error", error_msg, api_key=proxy_api_key)
return None, format_error_message("Unexpected Error", f"An unexpected error occurred: {error_msg}")
def handle_image_generation(prompt_val, model_val, provider_val, negative_prompt_val, width_val, height_val, steps_val, guidance_val, seed_val):
"""
Handle image generation request with validation.
"""
# Validate dimensions
is_valid, error_msg = validate_dimensions(width_val, height_val)
if not is_valid:
return None, format_error_message("Validation Error", error_msg)
# Generate image
return generate_image(
prompt=prompt_val,
model_name=model_val,
provider=provider_val,
negative_prompt=negative_prompt_val,
width=width_val,
height=height_val,
num_inference_steps=steps_val,
guidance_scale=guidance_val,
seed=seed_val
)
|