File size: 7,202 Bytes
c1bee18
 
 
 
 
 
c40f3d0
 
 
c1bee18
 
c40f3d0
c1bee18
 
 
 
 
 
 
 
c40f3d0
 
 
c1bee18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c40f3d0
c1bee18
c40f3d0
c1bee18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c40f3d0
 
 
 
 
c1bee18
c40f3d0
 
 
 
 
 
 
 
 
 
c1bee18
 
 
 
c40f3d0
 
c1bee18
 
 
c40f3d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1bee18
c40f3d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1bee18
 
c40f3d0
 
 
 
 
 
c1bee18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
"""
Image generation functionality handler for HF-Inferoxy AI Hub.
Handles text-to-image generation with multiple providers.
"""

import os
import time
import threading
from concurrent.futures import ThreadPoolExecutor, TimeoutError as FutureTimeoutError
from huggingface_hub import InferenceClient
from huggingface_hub.errors import HfHubHTTPError
from requests.exceptions import ConnectionError, Timeout, RequestException
from hf_token_utils import get_proxy_token, report_token_status
from utils import (
    IMAGE_CONFIG, 
    validate_proxy_key, 
    format_error_message, 
    format_success_message
)

# Timeout configuration for image generation
IMAGE_GENERATION_TIMEOUT = 300  # 5 minutes max for image generation


def validate_dimensions(width, height):
    """Validate that dimensions are divisible by 8 (required by most diffusion models)"""
    if width % 8 != 0 or height % 8 != 0:
        return False, "Width and height must be divisible by 8"
    return True, ""


def generate_image(
    prompt: str,
    model_name: str,
    provider: str,
    negative_prompt: str = "",
    width: int = IMAGE_CONFIG["width"],
    height: int = IMAGE_CONFIG["height"],
    num_inference_steps: int = IMAGE_CONFIG["num_inference_steps"],
    guidance_scale: float = IMAGE_CONFIG["guidance_scale"],
    seed: int = IMAGE_CONFIG["seed"],
):
    """
    Generate an image using the specified model and provider through HF-Inferoxy.
    """
    # Validate proxy API key
    is_valid, error_msg = validate_proxy_key()
    if not is_valid:
        return None, error_msg
    
    proxy_api_key = os.getenv("PROXY_KEY")
    
    token_id = None
    try:
        # Get token from HF-Inferoxy proxy server with timeout handling
        print(f"πŸ”‘ Image: Requesting token from proxy...")
        token, token_id = get_proxy_token(api_key=proxy_api_key)
        print(f"βœ… Image: Got token: {token_id}")
        
        print(f"🎨 Image: Using model='{model_name}', provider='{provider}'")
        
        # Create client with specified provider
        client = InferenceClient(
            provider=provider,
            api_key=token
        )
        
        print(f"πŸš€ Image: Client created, preparing generation params...")
        
        # Prepare generation parameters
        generation_params = {
            "model": model_name,
            "prompt": prompt,
            "width": width,
            "height": height,
            "num_inference_steps": num_inference_steps,
            "guidance_scale": guidance_scale,
        }
        
        # Add optional parameters if provided
        if negative_prompt:
            generation_params["negative_prompt"] = negative_prompt
        if seed != -1:
            generation_params["seed"] = seed
        
        print(f"πŸ“ Image: Dimensions: {width}x{height}, steps: {num_inference_steps}, guidance: {guidance_scale}")
        print(f"πŸ“‘ Image: Making generation request with {IMAGE_GENERATION_TIMEOUT}s timeout...")
        
        # Create generation function for timeout handling
        def generate_image_task():
            return client.text_to_image(**generation_params)
        
        # Execute with timeout using ThreadPoolExecutor
        with ThreadPoolExecutor(max_workers=1) as executor:
            future = executor.submit(generate_image_task)
            
            try:
                # Generate image with timeout
                image = future.result(timeout=IMAGE_GENERATION_TIMEOUT)
            except FutureTimeoutError:
                future.cancel()  # Cancel the running task
                raise TimeoutError(f"Image generation timed out after {IMAGE_GENERATION_TIMEOUT} seconds")
        
        print(f"πŸ–ΌοΈ Image: Generation completed! Image type: {type(image)}")
        
        # Report successful token usage
        if token_id:
            report_token_status(token_id, "success", api_key=proxy_api_key)
        
        return image, format_success_message("Image generated", f"using {model_name} on {provider}")
        
    except ConnectionError as e:
        # Handle proxy connection errors
        error_msg = f"Cannot connect to HF-Inferoxy server: {str(e)}"
        print(f"πŸ”Œ Image connection error: {error_msg}")
        if token_id:
            report_token_status(token_id, "error", error_msg, api_key=proxy_api_key)
        return None, format_error_message("Connection Error", "Unable to connect to the proxy server. Please check if it's running.")
        
    except TimeoutError as e:
        # Handle timeout errors
        error_msg = f"Image generation timed out: {str(e)}"
        print(f"⏰ Image timeout: {error_msg}")
        if token_id:
            report_token_status(token_id, "error", error_msg, api_key=proxy_api_key)
        return None, format_error_message("Timeout Error", f"Image generation took too long (>{IMAGE_GENERATION_TIMEOUT//60} minutes). Try reducing image size or steps.")
        
    except HfHubHTTPError as e:
        # Handle HuggingFace API errors
        error_msg = str(e)
        print(f"πŸ€— Image HF error: {error_msg}")
        if token_id:
            report_token_status(token_id, "error", error_msg, api_key=proxy_api_key)
        
        # Provide more user-friendly error messages
        if "401" in error_msg:
            return None, format_error_message("Authentication Error", "Invalid or expired API token. The proxy will provide a new token on retry.")
        elif "402" in error_msg:
            return None, format_error_message("Quota Exceeded", "API quota exceeded. The proxy will try alternative providers.")
        elif "429" in error_msg:
            return None, format_error_message("Rate Limited", "Too many requests. Please wait a moment and try again.")
        elif "content policy" in error_msg.lower() or "safety" in error_msg.lower():
            return None, format_error_message("Content Policy", "Image prompt was rejected by content policy. Please try a different prompt.")
        else:
            return None, format_error_message("HuggingFace API Error", error_msg)
        
    except Exception as e:
        # Handle all other errors
        error_msg = str(e)
        print(f"❌ Image unexpected error: {error_msg}")
        if token_id:
            report_token_status(token_id, "error", error_msg, api_key=proxy_api_key)
        return None, format_error_message("Unexpected Error", f"An unexpected error occurred: {error_msg}")


def handle_image_generation(prompt_val, model_val, provider_val, negative_prompt_val, width_val, height_val, steps_val, guidance_val, seed_val):
    """
    Handle image generation request with validation.
    """
    # Validate dimensions
    is_valid, error_msg = validate_dimensions(width_val, height_val)
    if not is_valid:
        return None, format_error_message("Validation Error", error_msg)
    
    # Generate image
    return generate_image(
        prompt=prompt_val,
        model_name=model_val,
        provider=provider_val,
        negative_prompt=negative_prompt_val,
        width=width_val,
        height=height_val,
        num_inference_steps=steps_val,
        guidance_scale=guidance_val,
        seed=seed_val
    )