Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,369 Bytes
9bcd9ad 865d725 66771c3 9bcd9ad 66771c3 9bcd9ad 66771c3 9bcd9ad 66771c3 774c640 66771c3 865d725 9bcd9ad 66771c3 ca66ea6 9bcd9ad 66771c3 9bcd9ad 66771c3 9bcd9ad 66771c3 9bcd9ad 66771c3 9bcd9ad 66771c3 ca66ea6 66771c3 9bcd9ad 66771c3 9bcd9ad 66771c3 9bcd9ad 66771c3 9bcd9ad 66771c3 9bcd9ad 66771c3 9bcd9ad 66771c3 865d725 9bcd9ad 66771c3 865d725 66771c3 865d725 ca66ea6 865d725 1bdc6e8 865d725 66771c3 9bcd9ad 66771c3 1bdc6e8 9bcd9ad ca66ea6 66771c3 1bdc6e8 66771c3 1bdc6e8 66771c3 9bcd9ad 66771c3 9bcd9ad 66771c3 ca66ea6 9bcd9ad ca66ea6 1bdc6e8 66771c3 ca66ea6 9bcd9ad ca66ea6 66771c3 ca66ea6 66771c3 9bcd9ad 66771c3 ca66ea6 66771c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
# app.py
import tempfile
from datetime import datetime
import gradio as gr
import pandas as pd
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
# ----------------------------
# Config
# ----------------------------
DEFAULT_MODELS = [
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
"Qwen/Qwen2.5-1.5B-Instruct",
"neovalle/tinyllama-1.1B-h4rmony-trained",
]
_MODEL_CACHE = {} # cache: model_id -> (tokenizer, model)
# ----------------------------
# Utilities
# ----------------------------
def _load_model(model_id: str):
if model_id in _MODEL_CACHE:
return _MODEL_CACHE[model_id]
tok = AutoTokenizer.from_pretrained(model_id, use_fast=True)
# Ensure pad token exists for generate()
if tok.pad_token is None:
if tok.eos_token is not None:
tok.pad_token = tok.eos_token
else:
tok.add_special_tokens({"pad_token": "<|pad|>"})
dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=dtype,
low_cpu_mem_usage=True,
device_map="auto",
)
if model.get_input_embeddings().num_embeddings != len(tok):
model.resize_token_embeddings(len(tok))
_MODEL_CACHE[model_id] = (tok, model)
return tok, model
def _format_prompt(tokenizer, system_prompt: str, user_prompt: str) -> str:
sys = (system_prompt or "").strip()
usr = (user_prompt or "").strip()
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template:
messages = []
if sys:
messages.append({"role": "system", "content": sys})
messages.append({"role": "user", "content": usr})
return tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
)
prefix = f"<<SYS>>\n{sys}\n<</SYS>>\n\n" if sys else ""
return f"{prefix}<<USER>>\n{usr}\n<</USER>>\n<<ASSISTANT>>\n"
def generate_batch_df(
model_id: str,
system_prompt: str,
prompts_multiline: str,
max_new_tokens: int,
temperature: float,
top_p: float,
top_k: int,
repetition_penalty: float,
) -> pd.DataFrame:
tok, model = _load_model(model_id)
device = model.device
prompts = [p.strip() for p in prompts_multiline.splitlines() if p.strip()]
if not prompts:
return pd.DataFrame([{"user_prompt": "", "response": "", "tokens_out": 0}])
formatted = [_format_prompt(tok, system_prompt, p) for p in prompts]
enc = tok(
formatted,
return_tensors="pt",
padding=True,
truncation=True,
).to(device)
prompt_lens = enc["attention_mask"].sum(dim=1)
with torch.no_grad():
gen = model.generate(
**enc,
max_new_tokens=int(max_new_tokens),
do_sample=(temperature > 0.0),
temperature=float(temperature) if temperature > 0 else None,
top_p=float(top_p),
top_k=int(top_k) if int(top_k) > 0 else None,
repetition_penalty=float(repetition_penalty),
eos_token_id=tok.eos_token_id,
pad_token_id=tok.pad_token_id,
)
responses, tokens_out = [], []
for i in range(gen.size(0)):
start = int(prompt_lens[i].item())
gen_ids = gen[i, start:]
text = tok.decode(gen_ids, skip_special_tokens=True).strip()
responses.append(text)
tokens_out.append(len(gen_ids))
return pd.DataFrame(
{"user_prompt": prompts, "response": responses, "tokens_out": tokens_out}
)
def write_csv_path(df: pd.DataFrame) -> str:
ts = datetime.utcnow().strftime("%Y%m%d-%H%M%S")
tmp = tempfile.NamedTemporaryFile(prefix=f"Output_{ts}_", suffix=".csv", delete=False, dir="/tmp")
df.to_csv(tmp.name, index=False)
return tmp.name
# ----------------------------
# Gradio UI
# ----------------------------
with gr.Blocks(title="Multi-Prompt Chat (System Prompt Control)") as demo:
gr.Markdown(
"""
# Multi-Prompt Chat to test system prompt effects
Pick a small free model, set a **system prompt**, and enter **multiple user prompts** (one per line).
Click **Generate** to get batched responses and a **downloadable CSV**.
"""
)
with gr.Row():
with gr.Column(scale=1):
model_id = gr.Dropdown(
choices=DEFAULT_MODELS,
value=DEFAULT_MODELS[0],
label="Model",
info="Free, small instruction-tuned models that run on CPU and free HF Space",
)
system_prompt = gr.Textbox(
label="System prompt",
placeholder="e.g., You are an ecolinguistics-aware assistant that always prioritise planetary well-being over anthropocentrism.",
lines=5,
)
prompts_multiline = gr.Textbox(
label="User prompts (one per line)",
placeholder="One query per line.\nExample:\nExplain transformers in simple terms\nGive 3 eco-friendly tips for students\nSummarise the benefits of multilingual models",
lines=10,
)
with gr.Accordion("Generation settings", open=False):
max_new_tokens = gr.Slider(16, 1024, value=256, step=1, label="max_new_tokens")
temperature = gr.Slider(0.0, 2.0, value=0.7, step=0.05, label="temperature")
top_p = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="top_p")
top_k = gr.Slider(0, 200, value=40, step=1, label="top_k (0 disables)")
repetition_penalty = gr.Slider(1.0, 2.0, value=1.1, step=0.01, label="repetition_penalty")
run_btn = gr.Button("Generate", variant="primary")
with gr.Column(scale=1):
out_df = gr.Dataframe(
headers=["user_prompt", "response", "tokens_out"],
datatype=["str", "str", "number"],
label="Results",
wrap=True,
interactive=False,
row_count=(0, "dynamic"),
type="pandas", # ensures pandas goes into callbacks
)
# IMPORTANT: type="filepath" so we can return a string path
csv_out = gr.File(label="CSV output", interactive=False, type="filepath")
# -------- Callback: generate table AND CSV path in one go --------
def _generate_cb(model_id, system_prompt, prompts_multiline, max_new_tokens, temperature, top_p, top_k, repetition_penalty):
df = generate_batch_df(
model_id=model_id,
system_prompt=system_prompt,
prompts_multiline=prompts_multiline,
max_new_tokens=int(max_new_tokens),
temperature=float(temperature),
top_p=float(top_p),
top_k=int(top_k),
repetition_penalty=float(repetition_penalty),
)
csv_path = write_csv_path(df)
return df, csv_path # DataFrame to table, path to File(type="filepath")
run_btn.click(
_generate_cb,
inputs=[model_id, system_prompt, prompts_multiline, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=[out_df, csv_out],
api_name="generate_batch",
)
if __name__ == "__main__":
demo.launch()
|