File size: 6,733 Bytes
dc4a84a b3c036b dc4a84a aa5f4d6 dc4a84a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
import os
from typing import Tuple
import gradio as gr
from PIL import Image
import torch
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
VisionEncoderDecoderModel,
TrOCRProcessor,
)
from huggingface_hub import login
import os
hf_token = os.getenv("HF_TOKEN")
if hf_token:
login(token=hf_token)
TITLE = "Picture to Problem Solver"
DESCRIPTION = (
"Upload an image. I’ll read the text and a math/code/science-trained AI will help answer your question."
"\n\n⚠️ Note: facebook/MobileLLM-R1-950M is released for non-commercial research use."
)
# ---------------------------
# Load OCR (TrOCR)
# ---------------------------
# Use the "printed" variant for typed/scanned text.
# If you expect handwriting, switch to: microsoft/trocr-base-handwritten
OCR_MODEL_ID = os.getenv("OCR_MODEL_ID", "microsoft/trocr-base-printed")
ocr_processor = TrOCRProcessor.from_pretrained(OCR_MODEL_ID)
ocr_model = VisionEncoderDecoderModel.from_pretrained(OCR_MODEL_ID)
ocr_model.eval()
# ---------------------------
# Load MobileLLM
# ---------------------------
LLM_MODEL_ID = os.getenv("LLM_MODEL_ID", "facebook/MobileLLM-R1-950M")
# Device & dtype selection that plays nice on Spaces
device = "cuda" if torch.cuda.is_available() else "cpu"
# Keep dtype conservative to avoid OOM on CPU Spaces
torch_dtype = torch.bfloat16 if (device == "cuda" and torch.cuda.is_bf16_supported()) else torch.float32
llm_tokenizer = AutoTokenizer.from_pretrained(LLM_MODEL_ID, use_fast=True)
llm_model = AutoModelForCausalLM.from_pretrained(
LLM_MODEL_ID,
torch_dtype=torch_dtype,
low_cpu_mem_usage=True,
device_map="auto" if device == "cuda" else None,
)
llm_model.eval()
if device == "cpu":
llm_model.to(device)
# Ensure EOS/BOS tokens exist
eos_token_id = llm_tokenizer.eos_token_id
if eos_token_id is None:
# Fallback: add one if truly missing (rare)
llm_tokenizer.add_special_tokens({"eos_token": "</s>"})
llm_model.resize_token_embeddings(len(llm_tokenizer))
eos_token_id = llm_tokenizer.eos_token_id
SYSTEM_INSTRUCTION = (
"You are a precise, step-by-step technical assistant. "
"You excel at math, programming (Python, C++), and scientific reasoning. "
"Be concise, show steps when helpful, and avoid hallucinations. "
)
USER_PROMPT_TEMPLATE = (
"Extracted text from the image:\n"
"-----------------------------\n"
"{ocr_text}\n"
"-----------------------------\n"
"{question_hint}"
)
def build_prompt(ocr_text: str, user_question: str) -> str:
if user_question and user_question.strip():
q = f"User question: {user_question.strip()}"
else:
q = "Please summarize the key information and explain any math/code/science content."
return f"{SYSTEM_INSTRUCTION}\n\n" + USER_PROMPT_TEMPLATE.format(
ocr_text=ocr_text.strip() if ocr_text else "(no text detected)",
question_hint=q,
)
@torch.inference_mode()
def run_pipeline(
image: Image.Image,
question: str,
max_new_tokens: int = 256,
temperature: float = 0.2,
top_p: float = 0.9,
) -> Tuple[str, str]:
"""
Returns:
(extracted_text, model_answer)
"""
if image is None:
return "", "Please upload an image."
# --- OCR ---
# TrOCR wants pixel_values prepared by its processor
pixel_values = ocr_processor(images=image, return_tensors="pt").pixel_values
with torch.inference_mode():
ocr_ids = ocr_model.generate(pixel_values, max_new_tokens=256)
extracted_text = ocr_processor.batch_decode(ocr_ids, skip_special_tokens=True)[0].strip()
# --- Build prompt for LLM ---
prompt = build_prompt(extracted_text, question)
# --- LLM Inference ---
inputs = llm_tokenizer(prompt, return_tensors="pt")
if device == "cuda":
inputs = {k: v.to(llm_model.device) for k, v in inputs.items()}
else:
inputs = {k: v.to(device) for k, v in inputs.items()}
generation_kwargs = dict(
max_new_tokens=max_new_tokens,
do_sample=True if temperature > 0 else False,
temperature=max(0.0, min(temperature, 1.5)),
top_p=max(0.1, min(top_p, 1.0)),
eos_token_id=eos_token_id,
pad_token_id=llm_tokenizer.eos_token_id, # keep decoding clean
)
output_ids = llm_model.generate(**inputs, **generation_kwargs)
# We only want the newly generated part for readability
gen_text = llm_tokenizer.decode(output_ids[0], skip_special_tokens=True)
# Optional: strip the original prompt if the model echoes it
if gen_text.startswith(prompt):
gen_text = gen_text[len(prompt):].lstrip()
return extracted_text, gen_text
def demo_ui():
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(f"# {TITLE}")
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(type="pil", label="Upload an image")
question = gr.Textbox(
label="Ask a question about the image (optional)",
placeholder="e.g., Summarize, extract key numbers, explain this formula, write Python to do X...",
)
with gr.Accordion("Generation settings (advanced)", open=False):
max_new_tokens = gr.Slider(32, 1024, value=256, step=16, label="max_new_tokens")
temperature = gr.Slider(0.0, 1.5, value=0.2, step=0.05, label="temperature")
top_p = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="top_p")
run_btn = gr.Button("Run")
with gr.Column(scale=1):
ocr_out = gr.Textbox(label="Extracted Text (OCR)", lines=8)
llm_out = gr.Markdown(label="AI Answer", elem_id="ai-answer")
run_btn.click(
run_pipeline,
inputs=[image_input, question, max_new_tokens, temperature, top_p],
outputs=[ocr_out, llm_out],
)
gr.Examples(
label="Try these sample prompts (use with your own images)",
examples=[
["", "Summarize the document."],
["", "Extract all dates and amounts, then total the amounts."],
["", "Explain the equation and solve for x."],
["", "Convert the pseudocode in the image to Python."],
],
inputs=[image_input, question],
)
gr.Markdown(
"—\n**Licensing reminder:** facebook/MobileLLM-R1-950M is typically released for non-commercial research use. "
"Review the model card before production use."
)
return demo
if __name__ == "__main__":
demo = demo_ui()
demo.launch() |