File size: 13,935 Bytes
b77cb84 5c22f32 718b39d 5c22f32 cbd8177 5c22f32 732f90d 5c22f32 0154093 b77cb84 20ed309 cbd8177 b77cb84 20ed309 b77cb84 20ed309 b77cb84 20ed309 b77cb84 20ed309 960994d b77cb84 6fc2c2d 20ed309 b77cb84 732f90d b77cb84 20ed309 b77cb84 20ed309 b77cb84 6fc2c2d 20ed309 b77cb84 20ed309 b77cb84 20ed309 b77cb84 960994d b77cb84 20ed309 b77cb84 20ed309 b77cb84 20ed309 9233e8b 20ed309 b77cb84 9233e8b b77cb84 cbd8177 b77cb84 cbd8177 b77cb84 baeca97 20ed309 b77cb84 20ed309 6fc2c2d baeca97 20ed309 b77cb84 986648a b77cb84 20ed309 b77cb84 20ed309 5c22f32 986648a cbd8177 b77cb84 986648a 9233e8b 986648a 20ed309 986648a 718b39d 9233e8b b77cb84 9233e8b 5c22f32 20ed309 9233e8b 5c22f32 9233e8b baeca97 5c22f32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
import gradio as gr
import pandas as pd
from pathlib import Path
from typing import Optional
from about import (
ENDPOINTS, API, METRICS,
submissions_repo,
results_repo_test,
results_repo_validation,
test_repo,
THROTTLE_MINUTES
)
from utils import bootstrap_metrics, clip_and_log_transform, fetch_dataset_df
from huggingface_hub import hf_hub_download
import datetime
import io
import json, tempfile
import re
from pydantic import (
BaseModel,
Field,
model_validator,
field_validator,
ValidationError
)
from loguru import logger
HF_USERNAME_RE = re.compile(r"^[A-Za-z0-9](?:[A-Za-z0-9-_]{1,38})$")
def _safeify_username(username: str) -> str:
return str(username.strip()).replace("/", "_").replace(" ", "_")
def _unsafify_username(username: str) -> str:
return str(username.strip()).replace("/", "_").replace(" ", "_")
def _check_required_columns(df: pd.DataFrame, name: str, cols: list[str]):
missing = [c for c in cols if c not in df.columns]
if missing:
raise ValueError(f"{name} is missing required columns: {missing}")
class ParticipantRecord(BaseModel):
hf_username: str = Field(description="Hugging Face username")
display_name: Optional[str] = Field(description="Name to display on leaderboard")
participant_name: Optional[str] = Field(default=None, description="Participant's real name")
discord_username: Optional[str] = Field(default=None, description="Discord username")
email: Optional[str] = Field(default=None, description="Email address")
affiliation: Optional[str] = Field(default=None, description="Affiliation")
model_tag: Optional[str] = Field(default=None, description="Link to model description")
anonymous: bool = Field(default=False, description="Whether to display username as 'anonymous'")
consent_publication: bool = Field(default=False, description="Consent to be included in publications")
@field_validator("hf_username")
@classmethod
def validate_hf_username(cls, v: str) -> str:
v = v.strip()
if not HF_USERNAME_RE.match(v):
raise gr.Error("Invalid Hugging Face username (letters, numbers, -, _; min 2, max ~39).")
return v
@field_validator("display_name")
@classmethod
def validate_display_name(cls, v: Optional[str]) -> Optional[str]:
if v is None:
return None
v = v.strip()
if not v:
return None
if len(v) > 20:
raise ValueError("Display name is too long (max 20 chars).")
return v
@field_validator("model_tag", mode="before")
@classmethod
def normalize_url(cls, v):
if v is None:
return v
s = str(v).strip()
if not s:
return None
if "://" not in s:
s = "https://" + s
return s
@model_validator(mode="after")
def require_display_name_if_anonymous(self) -> "ParticipantRecord":
if self.anonymous and not self.display_name:
raise ValueError("Alias is required when anonymous box is checked.")
return self
class SubmissionMetadata(BaseModel):
submission_time_utc: str
user: str
original_filename: str
evaluated: bool
participant: ParticipantRecord
def submit_data(predictions_file: str,
user_state,
participant_name: str = "",
discord_username: str = "",
email: str = "",
affiliation: str = "",
model_tag: str = "",
user_display: str = "",
anon_checkbox: bool = False,
paper_checkbox: bool = False
):
if user_state is None:
raise gr.Error("Username or alias is required for submission.")
# check the last time the user submitted
data = fetch_dataset_df()
if not data[data['user'] == user_state].empty:
last_time = data[data['user'] == user_state]['submission time'].max()
delta = datetime.datetime.now(datetime.timezone.utc) - last_time.to_pydatetime()
if delta < datetime.timedelta(minutes=THROTTLE_MINUTES):
raise gr.Error(f"You have submitted within the last {THROTTLE_MINUTES} minutes. Please wait {THROTTLE_MINUTES - int(delta.total_seconds() // 60)} minutes before submitting again.")
file_path = Path(predictions_file).resolve()
if not file_path.exists():
raise gr.Error("Uploaded file object does not have a valid file path.")
# Read results file
try:
results_df = pd.read_csv(file_path)
except Exception as e:
return f"β Error reading results file: {str(e)}"
if results_df.empty:
return gr.Error("The uploaded file is empty.")
missing = set(ENDPOINTS) - set(results_df.columns)
if missing:
return gr.Error(f"The uploaded file must contain all endpoint predictions {ENDPOINTS} as columns.")
# Save participant record
try:
participant_record = ParticipantRecord(
hf_username=user_state,
participant_name=participant_name,
discord_username=discord_username,
email=email,
affiliation=affiliation,
model_tag=model_tag,
display_name=user_display,
anonymous=anon_checkbox,
consent_publication=paper_checkbox
)
except ValidationError as e:
return f"β Error in participant information: {str(e)}"
# Build destination filename in the dataset
ts = datetime.datetime.now(datetime.timezone.utc).isoformat(timespec="seconds") # should keep default time so can be deserialized correctly
try:
meta = SubmissionMetadata(
submission_time_utc=ts,
user=user_state,
original_filename=file_path.name,
evaluated=False,
participant=participant_record
)
except ValidationError as e:
return f"β Error in metadata information: {str(e)}"
safe_user = _safeify_username(user_state)
destination_csv = f"submissions/{safe_user}_{ts}.csv"
destination_json = destination_csv.replace(".csv", ".json")
# Upload the CSV file
API.upload_file(
path_or_fileobj=str(file_path),
path_in_repo=destination_csv,
repo_id=submissions_repo,
repo_type="dataset",
commit_message=f"Add submission for user at {ts}"
)
# Upload the metadata JSON file
meta_bytes = io.BytesIO(json.dumps(meta.model_dump(), indent=2).encode("utf-8"))
API.upload_file(
path_or_fileobj=meta_bytes,
path_in_repo=destination_json,
repo_id=submissions_repo,
repo_type="dataset",
commit_message=f"Add metadata for user submission at {ts}"
)
return "β
Your submission has been received! Your scores will appear on the leaderboard shortly.", destination_csv
def evaluate_data(filename: str) -> None:
# do test set first as a more stringent check of the submission w.r.t matching molecules
logger.info(f"Evaluating submission file {filename}")
# evaluate on the test set
_evaluate_data(filename, test_repo=test_repo, split_filename="data/expansion_data_test.csv", results_repo=results_repo_test)
# evaluate on the validation set
_evaluate_data(filename, test_repo=test_repo, split_filename="data/expansion_data_test_validation.csv", results_repo=results_repo_validation)
logger.info(f"Finished evaluating submission file {filename}")
def _evaluate_data(filename: str, test_repo: str, split_filename: str, results_repo: str) -> None:
# Load the submission csv
try:
local_path = hf_hub_download(
repo_id=submissions_repo,
repo_type="dataset",
filename=filename,
)
except Exception as e:
raise gr.Error(f"Failed to download submission file: {e}")
# Load the test set
try:
test_path = hf_hub_download(
repo_id=test_repo,
repo_type="dataset",
filename=split_filename
)
except Exception as e:
raise gr.Error(f"Failed to download test file: {e}")
data_df = pd.read_csv(local_path)
test_df = pd.read_csv(test_path)
try:
results_df = calculate_metrics(data_df, test_df)
if not isinstance(results_df, pd.DataFrame) or results_df.empty:
raise gr.Error("Evaluation produced no results.")
except Exception as e:
raise gr.Error(f'Evaluation failed: {e}. No results written to results dataset.')
# Load metadata file
meta_filename = filename.replace(".csv", ".json")
try:
meta_path = hf_hub_download(
repo_id=submissions_repo,
repo_type="dataset",
filename=meta_filename,
)
with open(meta_path, "r", encoding="utf-8") as f:
_meta = json.load(f)
meta = SubmissionMetadata(**_meta)
username = meta.participant.hf_username
timestamp = meta.submission_time_utc
report = meta.participant.model_tag
if meta.participant.anonymous:
display_name = meta.participant.display_name
else:
display_name = username
except Exception as e:
raise gr.Error(f"Failed to load metadata file: {e}. No results written to results dataset.")
# Write results to results dataset
results_df['user'] = display_name
results_df['submission_time'] = timestamp
results_df['model_report'] = report
results_df['anonymous'] = meta.participant.anonymous
safe_user = _unsafify_username(username)
destination_path = f"results/{safe_user}_{timestamp}_results.csv"
tmp_name = None
with tempfile.NamedTemporaryFile(mode="w", suffix=".csv", delete=False) as tmp:
results_df.to_csv(tmp, index=False)
tmp.flush()
tmp_name = tmp.name
API.upload_file(
path_or_fileobj=tmp_name,
path_in_repo=destination_path,
repo_id=results_repo,
repo_type="dataset",
commit_message=f"Add result data for {username}"
)
Path(tmp_name).unlink()
def calculate_metrics(
results_dataframe: pd.DataFrame,
test_dataframe: pd.DataFrame
):
import numpy as np
# Do some checks
# 1) Check all columns are present
_check_required_columns(results_dataframe, "Results file", ["Molecule Name"] + ENDPOINTS)
_check_required_columns(test_dataframe, "Test file", ["Molecule Name"] + ENDPOINTS)
# 2) Check all Molecules in the test set are present in the predictions
if not (test_dataframe['Molecule Name']).isin(results_dataframe['Molecule Name']).all():
raise gr.Error("Some molecules in the test set are missing from the predictions file. Please ensure all molecules are included.")
# 3) check no duplicated molecules in the predictions file
if results_dataframe['Molecule Name'].duplicated().any():
raise gr.Error("The predictions file contains duplicated molecules. Please ensure each molecule is only listed once.")
# 4) Merge dataframes to ensure alignment
merged_df = results_dataframe.merge(
test_dataframe,
on="Molecule Name",
suffixes=('_pred', '_true'),
how="inner"
)
merged_df = merged_df.sort_values("Molecule Name")
# 5) loop over endpoints
final_cols = ["MAE", "RAE", "R2", "Spearman R", "Kendall's Tau"]
all_endpoint_results = []
for ept in ENDPOINTS:
pred_col = f"{ept}_pred"
true_col = f"{ept}_true"
# cast to numeric, coerce errors to NaN
merged_df[pred_col] = pd.to_numeric(merged_df[pred_col], errors="coerce")
merged_df[true_col] = pd.to_numeric(merged_df[true_col], errors="coerce")
if merged_df[pred_col].isnull().all():
raise gr.Error(f"All predictions are missing for endpoint {ept}. Please provide valid predictions.")
# subset and drop NaNs
subset = merged_df[[pred_col, true_col]].dropna()
if subset.empty:
raise gr.Error(f"No valid data available for endpoint {ept} after removing NaNs.")
# extract numpy arrays
y_pred = subset[pred_col].to_numpy()
y_true = subset[true_col].to_numpy()
# apply log10 + 1 transform except for logD
if ept.lower() not in ['logd']:
y_true_log = clip_and_log_transform(y_true)
y_pred_log = clip_and_log_transform(y_pred)
else:
y_true_log = y_true
y_pred_log = y_pred
# calculate metrics with bootstrapping
bootstrap_df = bootstrap_metrics(y_pred_log, y_true_log, ept, n_bootstrap_samples=1000)
# Longer pivot alternative for the cases where all metric results are NaN, as pivot ignores those columns
grouped = bootstrap_df.groupby(["Endpoint", "Metric"])["Value"].agg(["mean", "std"])
df_unstacked = grouped.unstack(level="Metric")
df_reindexed = df_unstacked.reindex(columns=list(METRICS), level=1)
df_reindexed.columns = [f"{agg}_{metric}" for agg, metric in df_reindexed.columns]
df_endpoint = df_reindexed.reset_index()
all_endpoint_results.append(df_endpoint)
df_results = pd.concat(all_endpoint_results, ignore_index=True)
mean_cols = [f'mean_{m}' for m in final_cols]
std_cols = [f'std_{m}' for m in final_cols]
# Average results
macro_means = df_results[mean_cols].mean()
macro_stds = df_results[std_cols].mean()
avg_row = {"Endpoint": "Average"}
avg_row.update(macro_means.to_dict())
avg_row.update(macro_stds.to_dict())
df_with_average = pd.concat([df_results, pd.DataFrame([avg_row])], ignore_index=True)
# Fix order of columns
df_with_average = df_with_average[["Endpoint"]+mean_cols+std_cols]
return df_with_average |