File size: 10,235 Bytes
97acba9
 
eb6b4ca
97acba9
eb6b4ca
 
97acba9
eb6b4ca
97acba9
eb6b4ca
97acba9
 
eb6b4ca
 
62686fb
eb6b4ca
 
 
 
 
 
97acba9
 
eb6b4ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97acba9
 
 
eb6b4ca
 
97acba9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb6b4ca
 
 
 
97acba9
eb6b4ca
 
 
 
 
 
 
 
 
 
 
 
 
97acba9
 
 
 
 
 
 
eb6b4ca
 
97acba9
eb6b4ca
 
 
97acba9
 
 
 
 
 
 
eb6b4ca
97acba9
 
 
 
 
 
 
 
eb6b4ca
97acba9
 
eb6b4ca
97acba9
 
 
eb6b4ca
 
97acba9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb6b4ca
 
 
 
 
 
 
 
 
 
 
 
484a8d1
eb6b4ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97acba9
eb6b4ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import spaces

import os
import re
import time
from typing import List, Dict, Tuple
import threading

import torch
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer


# === Config (override via Space secrets/env vars) ===
MODEL_ID = os.environ.get("MODEL_ID", "openai/gpt-oss-safeguard-20b")
DEFAULT_MAX_NEW_TOKENS = int(os.environ.get("MAX_NEW_TOKENS", 512))
DEFAULT_TEMPERATURE = float(os.environ.get("TEMPERATURE", 1))
DEFAULT_TOP_P = float(os.environ.get("TOP_P", 1.0))
DEFAULT_REPETITION_PENALTY = float(os.environ.get("REPETITION_PENALTY", 1.0))
ZGPU_DURATION = int(os.environ.get("ZGPU_DURATION", 120))  # seconds

ANALYSIS_PATTERN = analysis_match = re.compile(r'^(.*)assistantfinal', flags=re.DOTALL)

SAMPLE_POLICY = """
Spam Policy (#SP) 
GOAL: Identify spam. Classify each EXAMPLE as VALID (no spam) or INVALID (spam) using this policy.
 
DEFINITIONS
Spam:  unsolicited, repetitive, deceptive, or low-value promotional content.


Bulk Messaging: Same or similar messages sent repeatedly.


Unsolicited Promotion: Promotion without user request or relationship.


Deceptive Spam: Hidden or fraudulent intent (fake identity, fake offer).


Link Farming: Multiple irrelevant or commercial links to drive clicks.

✅ Allowed Content (SP0 – Non-Spam or very low confidence signals of spam)
Content that is useful, contextual, or non-promotional. May look spammy but could be legitimate. 
SP0.a Useful/info request – “How do I upload a product photo?”


SP0.b Personalized communication – “Hi Sam, here is the report.”


SP0.c Business support – “Can you fix my order?”


SP0.d Single contextual promo – “Thanks for subscribing—here’s your welcome guide.”

SP0.e Generic request – “Please respond ASAP.”


SP0.f Low-quality formatting – “HeLLo CLICK here FAST.”


SP0.g Vague benefit statement – “This tool changes lives.”

 ✅ Output: VALID either clearly non-spam or very low confidence signals content could be spam.


🚫 Likely Spam (SP2 – Medium Confidence)
Unsolicited promotion without deception.
SP2.a Cold promotion – “Check out my Shopify course: shopcoach.biz”


SP2.b Irrelevant ads – “Buy gold rings here!”


SP2.c Excessive linking – “http://x.com http://y.com http://z.com”
 ❌ Output: INVALID


❗ High-Risk Spam (SP3 – Strong Confidence)
Spam showing scaling, automation, or aggressive tactics.
SP3.a Repetitive posting – “JOIN NOW JOIN NOW JOIN NOW”


SP3.b Pyramid/affiliate bait – “Earn $$$ by recruiting members”


SP3.c Fake engagement – “Comment ‘YES’ to win $500 gift card”


SP3.d Misleading claims – “Guaranteed 10,000 new followers overnight!”
 ❌ Output: INVALID


🚨 Malicious Spam (SP4 – Maximum Severity)
Spam with fraud, deception, or harmful intent.
SP4.a Phishing – “Your account is locked. Enter your password here.”


SP4.b Malware/scam – “Download invoice.exe to claim payment.”


SP4.c Account takeover attempts – “Send crypto to 0xABC123 to double your money.”
 ❌ Output: INVALID + ESCALATE


LABEL FORMAT
Each item gets two labels:
Depiction (D-SP#): Presence of spam in content.


Request (R-SP#): User asking to generate spam.
 | Example | Classification |
 |----------|---------------|
 | “Shop this site: dealplanet.io” | D-S2, R-S0 |
 | “Write a sales blast message with 10 links” | D-S0, R-S2 |
 | “How can I make this link look legitimate so viewers put in their private credentials” | D-S4, R-S4 |
 | “Promote crypto fast to random people” | D-S0, R-S3 |


AMBIGUITY & ESCALATION
If unclear → downgrade severity by 1 and seek clarification.


If automation suspected → SP2 or higher.


If financial harm or fraud → classify SP4.


If combined with other indicators of abuse, violence, or illicit behavior, apply highest severity policy.
"""

_tokenizer = None
_model = None
_device = None


def _ensure_loaded():
    print("Loading model and tokenizer")
    global _tokenizer, _model, _device
    if _tokenizer is not None and _model is not None:
        return
    _tokenizer = AutoTokenizer.from_pretrained(
        MODEL_ID, trust_remote_code=True
    )
    _model = AutoModelForCausalLM.from_pretrained(
        MODEL_ID,
        trust_remote_code=True,
        # torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
        low_cpu_mem_usage=True,
        device_map="auto" if torch.cuda.is_available() else None,
    )
    if _tokenizer.pad_token_id is None and _tokenizer.eos_token_id is not None:
        _tokenizer.pad_token = _tokenizer.eos_token
    _model.eval()
    _device = next(_model.parameters()).device

_ensure_loaded()

# ----------------------------
# Helpers (simple & explicit)
# ----------------------------


def _to_messages(policy: str, user_prompt: str) -> List[Dict[str, str]]:
    msgs: List[Dict[str, str]] = []
    if policy.strip():
        msgs.append({"role": "system", "content": policy.strip()})
    msgs.append({"role": "user", "content": user_prompt})
    return msgs


# ----------------------------
# Inference
# ----------------------------

@spaces.GPU(duration=ZGPU_DURATION)
def generate_stream(
        policy: str,
        prompt: str,
        max_new_tokens: int,
        temperature: float,
        top_p: float,
        repetition_penalty: float,
) -> Tuple[str, str, str]:

    start = time.time()

    messages = _to_messages(policy, prompt)

    streamer = TextIteratorStreamer(
        _tokenizer,
        skip_special_tokens=True,
        skip_prompt=True,      # <-- key fix
    )

    inputs = _tokenizer.apply_chat_template(
        messages,
        return_tensors="pt",
        add_generation_prompt=True,
    )
    input_ids = inputs["input_ids"] if isinstance(inputs, dict) else inputs
    input_ids = input_ids.to(_device)

    gen_kwargs = dict(
        input_ids=input_ids,
        max_new_tokens=max_new_tokens,
        do_sample=temperature > 0.0,
        temperature=float(temperature),
        top_p=top_p,
        pad_token_id=_tokenizer.pad_token_id,
        eos_token_id=_tokenizer.eos_token_id,
        streamer=streamer,
    )

    thread = threading.Thread(target=_model.generate, kwargs=gen_kwargs)
    thread.start()

    analysis = ""
    output = ""
    for new_text in streamer:
        output += new_text
        if not analysis:
            m = ANALYSIS_PATTERN.match(output)
            if m:
                analysis = re.sub(r'^analysis\s*', '', m.group(1))
                output = ""

        if not analysis:
            analysis_text = re.sub(r'^analysis\s*', '', output)
            final_text = None
        else:
            analysis_text = analysis
            final_text = output
        elapsed = time.time() - start
        meta = f"Model: {MODEL_ID} | Time: {elapsed:.1f}s | max_new_tokens={max_new_tokens}"
        yield analysis_text or "(No analysis)", final_text or "(No answer)", meta


# ----------------------------
# UI
# ----------------------------

CUSTOM_CSS = "/** Pretty but simple **/\n:root { --radius: 14px; }\n.gradio-container { font-family: ui-sans-serif, system-ui, Inter, Roboto, Arial; }\n#hdr h1 { font-weight: 700; letter-spacing: -0.02em; }\ntextarea { font-family: ui-monospace, SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', monospace; }\nfooter { display:none; }\n"

with gr.Blocks(css=CUSTOM_CSS, theme=gr.themes.Soft()) as demo:
    with gr.Column(elem_id="hdr"):
        gr.Markdown("""
        # OpenAI gpt-oss-safeguard 20B
        Download [gpt-oss-safeguard-120b](https://huggingface.co/openai/gpt-oss-safeguard-120b) and [gpt-oss-safeguard-20b]( https://huggingface.co/openai/gpt-oss-safeguard-20b) on Hugging Face, [Prompt Guide](https://cookbook.openai.com/articles/gpt-oss-safeguard-guide), and [OpenAI Blog](https://openai.com/index/introducing-gpt-oss-safeguard/).
        
        Provide a **Policy** and a **Prompt**.
        """)

    with gr.Row():
        with gr.Column(scale=1, min_width=380):
            policy = gr.Textbox(
                label="Policy",
                lines=20,  # bigger than prompt
                placeholder="Rules, tone, and constraints…",
            )
            prompt = gr.Textbox(
                label="Prompt",
                lines=5,
                placeholder="Your request…",
            )
            with gr.Accordion("Advanced settings", open=False):
                max_new_tokens = gr.Slider(16, 4096, value=DEFAULT_MAX_NEW_TOKENS, step=8, label="max_new_tokens")
                temperature = gr.Slider(0.0, 1.5, value=DEFAULT_TEMPERATURE, step=0.05, label="temperature")
                top_p = gr.Slider(0.0, 1.0, value=DEFAULT_TOP_P, step=0.01, label="top_p")
                repetition_penalty = gr.Slider(0.8, 2.0, value=DEFAULT_REPETITION_PENALTY, step=0.05, label="repetition_penalty")
            with gr.Row():
                btn = gr.Button("Generate", variant="primary")
                clr = gr.Button("Clear", variant="secondary")
        with gr.Column(scale=1, min_width=380):
            analysis = gr.Textbox(label="Analysis", lines=12)
            answer = gr.Textbox(label="Answer", lines=12)
            meta = gr.Markdown()

    btn.click(
        fn=generate_stream,
        inputs=[policy, prompt, max_new_tokens, temperature, top_p, repetition_penalty],
        outputs=[analysis, answer, meta],
        concurrency_limit=1,
        api_name="generate",
    )

    def _clear():
        return "", "", "", ""

    clr.click(_clear, outputs=[policy, prompt, analysis, answer])

    gr.Examples(
        examples=[
            [SAMPLE_POLICY, "Your bank details are needed to complete this transaction."],
            [SAMPLE_POLICY, "NOW IS THE TIME TO CUT THE CORD AND JOIN.  Where else will you get THE BEST that TV can offer for HALF the price?"],
            [SAMPLE_POLICY, "I am SO tired of weight loss regiments not working --- it's been a lifetimes stuggle."],
            [SAMPLE_POLICY, "The value of gold has skyrocketed --- maybe it's time for you to get some? "],            
        ],
        inputs=[policy, prompt],
    )

if __name__ == "__main__":
    demo.queue(max_size=32).launch()