neuron-exporter / app.py
tengomucho's picture
tengomucho HF Staff
feat: allow image loading and avoid CORS error
06e24a5 verified
import csv
import os
import base64
from datetime import datetime
from typing import Optional, Union, List
import gradio as gr
from huggingface_hub import HfApi, Repository
from optimum_neuron_export import convert, DIFFUSION_PIPELINE_MAPPING
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from apscheduler.schedulers.background import BackgroundScheduler
# Define transformer tasks and their categories for coloring
TRANSFORMER_TASKS = {
"auto": {"color": "#6b7280", "category": "Auto"},
"feature-extraction": {"color": "#3b82f6", "category": "Feature Extraction"},
"fill-mask": {"color": "#8b5cf6", "category": "NLP"},
"multiple-choice": {"color": "#8b5cf6", "category": "NLP"},
"question-answering": {"color": "#8b5cf6", "category": "NLP"},
"text-classification": {"color": "#8b5cf6", "category": "NLP"},
"token-classification": {"color": "#8b5cf6", "category": "NLP"},
"text-generation": {"color": "#10b981", "category": "Text Generation"},
"text2text-generation": {"color": "#10b981", "category": "Text Generation"},
"audio-classification": {"color": "#f59e0b", "category": "Audio"},
"automatic-speech-recognition": {"color": "#f59e0b", "category": "Audio"},
"audio-frame-classification": {"color": "#f59e0b", "category": "Audio"},
"audio-xvector": {"color": "#f59e0b", "category": "Audio"},
"image-classification": {"color": "#ef4444", "category": "Vision"},
"object-detection": {"color": "#ef4444", "category": "Vision"},
"semantic-segmentation": {"color": "#ef4444", "category": "Vision"},
"zero-shot-image-classification": {"color": "#ec4899", "category": "Multimodal"},
"sentence-similarity": {"color": "#06b6d4", "category": "Similarity"},
}
# Define diffusion pipeline types - updated structure
DIFFUSION_PIPELINES = {
"stable-diffusion": {"color": "#ec4899", "category": "Stable Diffusion", "tasks": ["text-to-image", "image-to-image", "inpaint"]},
"stable-diffusion-xl": {"color": "#10b981", "category": "Stable Diffusion XL", "tasks": ["text-to-image", "image-to-image", "inpaint"]},
"sdxl-turbo": {"color": "#f59e0b", "category": "SDXL Turbo", "tasks": ["text-to-image", "image-to-image", "inpaint"]},
"lcm": {"color": "#8b5cf6", "category": "LCM", "tasks": ["text-to-image"]},
"pixart-alpha": {"color": "#ef4444", "category": "PixArt", "tasks": ["text-to-image"]},
"pixart-sigma": {"color": "#ef4444", "category": "PixArt", "tasks": ["text-to-image"]},
"flux": {"color": "#06b6d4", "category": "Flux", "tasks": ["text-to-image", "inpaint"]},
"flux-kontext": {"color": "#06b6d4", "category": "Flux Kontext", "tasks": ["text-to-image", "image-to-image"]},
}
TAGS = {
"Feature Extraction": {"color": "#3b82f6", "category": "Feature Extraction"},
"NLP": {"color": "#8b5cf6", "category": "NLP"},
"Text Generation": {"color": "#10b981", "category": "Text Generation"},
"Audio": {"color": "#f59e0b", "category": "Audio"},
"Vision": {"color": "#ef4444", "category": "Vision"},
"Multimodal": {"color": "#ec4899", "category": "Multimodal"},
"Similarity": {"color": "#06b6d4", "category": "Similarity"},
"Stable Diffusion": {"color": "#ec4899", "category": "Stable Diffusion"},
"Stable Diffusion XL": {"color": "#10b981", "category": "Stable Diffusion XL"},
"ControlNet": {"color": "#f59e0b", "category": "ControlNet"},
"ControlNet XL": {"color": "#f59e0b", "category": "ControlNet XL"},
"PixArt": {"color": "#ef4444", "category": "PixArt"},
"Latent Consistency": {"color": "#8b5cf6", "category": "Latent Consistency"},
"Flux": {"color": "#06b6d4", "category": "Flux"},
}
# UPDATED: New choices for the Pull Request destination UI component
DEST_NEW_NEURON_REPO = "Create new Neuron-optimized repository"
DEST_CACHE_REPO = "Create a PR in the cache repository"
DEST_CUSTOM_REPO = "Create a PR in a custom repository"
PR_DESTINATION_CHOICES = [
DEST_CACHE_REPO,
DEST_NEW_NEURON_REPO,
DEST_CUSTOM_REPO
]
DEFAULT_CACHE_REPO = "aws-neuron/optimum-neuron-cache"
# Get all tasks and pipelines for dropdowns
ALL_TRANSFORMER_TASKS = list(TRANSFORMER_TASKS.keys())
ALL_DIFFUSION_PIPELINES = list(DIFFUSION_PIPELINES.keys())
def create_task_tag(task: str) -> str:
"""Create a colored HTML tag for a task"""
if task in TRANSFORMER_TASKS:
color = TRANSFORMER_TASKS[task]["color"]
return f'<span style="background-color: {color}; color: white; padding: 2px 6px; border-radius: 12px; font-size: 0.75rem; font-weight: 500; margin: 1px;">{task}</span>'
elif task in DIFFUSION_PIPELINES:
color = DIFFUSION_PIPELINES[task]["color"]
return f'<span style="background-color: {color}; color: white; padding: 2px 6px; border-radius: 12px; font-size: 0.75rem; font-weight: 500; margin: 1px;">{task}</span>'
elif task in TAGS:
color = TAGS[task]["color"]
return f'<span style="background-color: {color}; color: white; padding: 2px 6px; border-radius: 12px; font-size: 0.75rem; font-weight: 500; margin: 1px;">{task}</span>'
else:
return f'<span style="background-color: #6b7280; color: white; padding: 2px 6px; border-radius: 12px; font-size: 0.75rem; font-weight: 500; margin: 1px;">{task}</span>'
def format_tasks_for_table(tasks_str: str) -> str:
"""Convert comma-separated tasks into colored tags"""
tasks = [task.strip() for task in tasks_str.split(',')]
return ' '.join([create_task_tag(task) for task in tasks])
def update_pipeline_and_task_dropdowns(model_type: str):
"""Update the pipeline and task dropdowns based on selected model type"""
if model_type == "transformers":
return (
gr.Dropdown(visible=False), # pipeline dropdown hidden
gr.Dropdown(
choices=ALL_TRANSFORMER_TASKS,
value="auto",
label="Task (auto can infer task from model)",
visible=True
)
)
else: # diffusers
# Show pipeline dropdown, hide task dropdown initially
return (
gr.Dropdown(
choices=ALL_DIFFUSION_PIPELINES,
value="stable-diffusion",
label="Pipeline Type",
visible=True
),
gr.Dropdown(
choices=DIFFUSION_PIPELINES["stable-diffusion"]["tasks"],
value=DIFFUSION_PIPELINES["stable-diffusion"]["tasks"][0],
label="Task",
visible=True
)
)
def update_task_dropdown_for_pipeline(pipeline_name: str):
"""Update task dropdown based on selected pipeline"""
if pipeline_name in DIFFUSION_PIPELINES:
tasks = DIFFUSION_PIPELINES[pipeline_name]["tasks"]
return gr.Dropdown(
choices=tasks,
value=tasks[0] if tasks else None,
label="Task",
visible=True
)
return gr.Dropdown(visible=False)
def toggle_custom_repo_box(pr_destinations: List[str]):
"""Show or hide the custom repo ID textbox based on checkbox selection."""
if DEST_CUSTOM_REPO in pr_destinations:
return gr.Textbox(visible=True)
else:
return gr.Textbox(visible=False, value="")
def neuron_export(model_id: str, model_type: str, pipeline_name: str, task_or_pipeline: str,
pr_destinations: List[str], custom_repo_id: str, custom_cache_repo: str, oauth_token: gr.OAuthToken):
log_buffer = ""
def log(msg, in_progress: bool = False):
nonlocal log_buffer
# Handle cases where the message from the backend is not a string
if not isinstance(msg, str):
msg = str(msg)
log_buffer += msg + "\n"
return log_buffer, gr.update(visible=in_progress)
if oauth_token.token is None:
yield log("You must be logged in to use this space")
return
if not model_id:
yield log("🚫 Invalid input. Please specify a model name from the hub.")
return
try:
api = HfApi(token=oauth_token.token)
# Set custom cache repo as environment variable
if custom_cache_repo:
os.environ['CUSTOM_CACHE_REPO'] = custom_cache_repo.strip()
yield log("🔑 Logging in ...", in_progress=True)
try:
api.model_info(model_id, token=oauth_token.token)
except Exception as e:
yield log(f"❌ Could not access model `{model_id}`: {e}")
return
yield log(f"✅ Model `{model_id}` is accessible. Starting Neuron export...", in_progress=True)
# UPDATED: Build pr_options with new structure
pr_options = {
"create_cache_pr": DEST_CACHE_REPO in pr_destinations,
"create_neuron_repo": DEST_NEW_NEURON_REPO in pr_destinations,
"create_custom_pr": DEST_CUSTOM_REPO in pr_destinations,
"custom_repo_id": custom_repo_id.strip() if custom_repo_id else ""
}
# The convert function is a generator, so we iterate through its messages
for status_code, message in convert(
api, model_id, task_or_pipeline, model_type,
token=oauth_token.token, pr_options=pr_options,
pipeline_name=pipeline_name if model_type == "diffusers (soon)" else None
):
if isinstance(message, str):
yield log(message, in_progress=True)
else: # It's the final result dictionary
final_message = "🎉 Process finished.\n"
if message.get("neuron_repo"):
final_message += f"🏗️ New Neuron Repository: {message['neuron_repo']}\n"
if message.get("readme_pr"):
final_message += f"📝 README PR (Original Model): {message['readme_pr']}\n"
if message.get("cache_pr"):
final_message += f"🔗 Cache PR: {message['cache_pr']}\n"
if message.get("custom_pr"):
final_message += f"🔗 Custom PR: {message['custom_pr']}\n"
yield log(final_message)
except Exception as e:
yield log(f"❗ An unexpected error occurred in the Gradio interface: {e}")
TITLE = """
<div style="text-align: center; max-width: 1400px; margin: 0 auto;">
<h1 style="font-weight: 900; margin-bottom: 10px; margin-top: 10px; font-size: 2.2rem;">
🤗 Optimum Neuron Model Exporter 🏎️
</h1>
</div>
"""
# UPDATED: Description to reflect new workflow
DESCRIPTION = """
This Space allows you to automatically export 🤗 transformers to AWS Neuron-optimized format for Inferentia/Trainium acceleration.
"""
CUSTOM_CSS = """
/* Primary button styling with warm colors */
button.gradio-button.lg.primary {
/* Changed the blue/green gradient to an orange/yellow one */
background: linear-gradient(135deg, #F97316, #FBBF24) !important;
color: white !important;
padding: 16px 32px !important;
font-size: 1.1rem !important;
font-weight: 700 !important;
border: none !important;
border-radius: 12px !important;
/* Updated the shadow to match the new orange color */
box-shadow: 0 0 15px rgba(249, 115, 22, 0.5) !important;
transition: all 0.3s cubic-bezier(0.25, 0.8, 0.25, 1) !important;
position: relative;
overflow: hidden;
}
/* Login button styling with glow effect using dark blue and violet colors */
#login-button {
background: linear-gradient(135deg, #1a237e, #6a1b9a) !important; /* Dark Blue to Violet */
color: white !important;
font-weight: 700 !important;
border: none !important;
border-radius: 12px !important;
box-shadow: 0 0 15px rgba(106, 27, 154, 0.6) !important; /* Cool violet glow */
transition: all 0.3s cubic-bezier(0.25, 0.8, 0.25, 1) !important;
position: relative;
overflow: hidden;
animation: glow 1.5s ease-in-out infinite alternate;
max-width: 350px !important;
margin: 0 auto !important;
}
#login-button::before {
content: "🔑 ";
display: inline-block !important;
vertical-align: middle !important;
margin-right: 5px !important;
line-height: normal !important;
}
#login-button:hover {
transform: translateY(-3px) scale(1.03) !important;
box-shadow: 0 10px 25px rgba(26, 35, 126, 0.7) !important; /* Deeper blue glow */
}
#login-button::after {
content: "";
position: absolute;
top: 0;
left: -100%;
width: 100%;
height: 100%;
background: linear-gradient(90deg, transparent, rgba(255, 255, 255, 0.25), transparent);
transition: 0.5s;
}
#login-button:hover::after {
left: 100%;
}
.loader {
width: 20px;
height: 20px;
border: 5px solid #d7d7d7;
border-bottom-color: transparent;
border-radius: 50%;
display: inline-block;
box-sizing: border-box;
animation: rotation 1s linear infinite;
}
@keyframes rotation {
0% {
transform: rotate(0deg);
}
100% {
transform: rotate(360deg);
}
}
"""
LOADING_MESSAGE = """
<div id="in_progress"><span class="loader">&nbsp;&nbsp;&nbsp;&nbsp;</span>&nbsp;Model export in progress...</div>
"""
# Download the title image at startup and encode as base64 to avoid CORS errors
def get_title_image_html():
"""Download image and return HTML with base64 encoded image"""
image_data = None
# Download image
try:
# Use huggingface_hub to download the file (handles auth automatically)
from huggingface_hub import hf_hub_download
downloaded_path = hf_hub_download(
repo_id="optimum/neuron-exporter",
filename="huggingfaceXneuron.png",
repo_type="space"
)
# Read directly from downloaded path
with open(downloaded_path, 'rb') as f:
image_data = f.read()
except Exception as e:
print(f"Warning: Could not download title image: {e}")
return "" # Return empty if download fails
# Encode as base64
if image_data:
encoded = base64.b64encode(image_data).decode('utf-8')
return f"""
<div style="display: block; margin-left: auto; margin-right: auto; width: 50%;">
<img src="data:image/png;base64,{encoded}"/>
</div>
"""
return ""
with gr.Blocks(css=CUSTOM_CSS, theme=gr.themes.Soft()) as demo:
gr.Markdown("**You must be logged in to use this space**")
gr.LoginButton(elem_id="login-button", elem_classes="center-button", min_width=250)
title_image = get_title_image_html()
gr.HTML(title_image)
gr.HTML(TITLE)
gr.Markdown(DESCRIPTION)
with gr.Tabs():
with gr.Tab("Export Model"):
with gr.Group():
with gr.Row():
pr_destinations_checkbox = gr.CheckboxGroup(
choices=PR_DESTINATION_CHOICES,
label="Export Destination",
value=[DEST_CACHE_REPO],
info="Select one or more destinations for the compiled model."
)
custom_repo_id_textbox = gr.Textbox(
label="Custom Repository ID",
placeholder="e.g., your-username/your-repo-name",
visible=False,
interactive=True
)
custom_cache_repo_textbox = gr.Textbox(
label="Custom Cache Repository",
placeholder="e.g., your-org/your-cache-repo",
value=DEFAULT_CACHE_REPO,
info=f"Repository to store and fetch from compilation cache artifacts (default: {DEFAULT_CACHE_REPO}) ",
interactive=True
)
with gr.Row():
model_type = gr.Radio(
choices=["transformers", "diffusers (soon)"],
value="transformers",
label="Model Type",
info="Choose the type of model you want to export"
)
with gr.Row():
input_model = HuggingfaceHubSearch(
label="Hub model ID",
placeholder="Search for a model on the Hub...",
search_type="model",
)
pipeline_dropdown = gr.Dropdown(
choices=ALL_DIFFUSION_PIPELINES,
value="stable-diffusion",
label="Pipeline Type",
visible=False
)
task_dropdown = gr.Dropdown(
choices=ALL_TRANSFORMER_TASKS,
value="auto",
label="Task (auto can infer from model)",
)
btn = gr.Button("Export to Neuron", size="lg", variant="primary")
loading_message = gr.HTML(LOADING_MESSAGE, visible=False, elem_id="loaging_message")
log_box = gr.Textbox(label="Logs", lines=20, interactive=False, show_copy_button=True)
# Event Handlers
model_type.change(
fn=update_pipeline_and_task_dropdowns,
inputs=[model_type],
outputs=[pipeline_dropdown, task_dropdown]
)
pipeline_dropdown.change(
fn=update_task_dropdown_for_pipeline,
inputs=[pipeline_dropdown],
outputs=[task_dropdown]
)
pr_destinations_checkbox.change(
fn=toggle_custom_repo_box,
inputs=pr_destinations_checkbox,
outputs=custom_repo_id_textbox
)
btn.click(
fn=neuron_export,
inputs=[
input_model,
model_type,
pipeline_dropdown,
task_dropdown,
pr_destinations_checkbox,
custom_repo_id_textbox,
custom_cache_repo_textbox
],
outputs=[log_box, loading_message],
)
with gr.Tab("Get Started"):
gr.Markdown(
"""
**optimum-neuron version:** 0.4.1
This Space allows you to automatically export 🤗 transformers to AWS Neuron-optimized format for Inferentia/Trainium acceleration.
Simply provide a model ID from the Hugging Face Hub, and choose your desired output.
### ✨ Key Features
* **🚀 Create a New Optimized Repo**: Automatically converts your model and uploads it to a new repository under your username (e.g., `your-username/model-name-neuron`).
* **🔗 Link Back to Original**: Creates a Pull Request on the original model's repository to add a link to your optimized version, making it easier for the community to discover.
* **🛠️ PR to a Custom Repo**: For custom workflows, you can create a Pull Request to add the optimized files directly into an existing repository you own.
* **📦 Contribute to Cache**: Contribute the generated compilation artifacts to a centralized cache repository (or your own private cache), helping avoid recompilation of already exported models.
### ⚙️ How to Use
1. **Model ID**: Enter the ID of the model you want to export (e.g., `bert-base-uncased` or `stabilityai/stable-diffusion-xl-base-1.0`) and choose the corresponding task.
2. **Export Options**: Select at least one option for where to save the exported model. You can provide your own cache repo ID or use the default (`aws-neuron/optimum-neuron-cache`).
3. **Convert & Upload**: Click the button and follow the logs to track progress!
"""
)
with gr.Tab("Supported Architectures"):
gr.HTML(f"""
<div style="margin-bottom: 20px;">
<h3>🎨 Task Categories Legend</h3>
<div class="task-tags">
{create_task_tag("Feature Extraction")}
{create_task_tag("NLP")}
{create_task_tag("Text Generation")}
{create_task_tag("Audio")}
{create_task_tag("Vision")}
{create_task_tag("Multimodal")}
{create_task_tag("Similarity")}
</div>
</div>
""")
gr.HTML(f"""
<h2>🤗 Transformers</h2>
<table style="width: 100%; border-collapse: collapse; margin: 20px 0;">
<colgroup>
<col style="width: 30%;">
<col style="width: 70%;">
</colgroup>
<thead>
<tr style="background-color: var(--background-fill-secondary);">
<th style="border: 1px solid var(--border-color-primary); padding: 12px; text-align: left;">Architecture</th>
<th style="border: 1px solid var(--border-color-primary); padding: 12px; text-align: left;">Supported Tasks</th>
</tr>
</thead>
<tbody>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">ALBERT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">AST</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, audio-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">BERT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">BLOOM</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-generation")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Beit</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">CamemBERT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">CLIP</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">ConvBERT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">ConvNext</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">ConvNextV2</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">CvT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">DeBERTa (INF2 only)</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">DeBERTa-v2 (INF2 only)</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Deit</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">DistilBERT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">DonutSwin</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Dpt</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">ELECTRA</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">ESM</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">FlauBERT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">GPT2</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-generation")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Hubert</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, automatic-speech-recognition, audio-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Levit</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Llama, Llama 2, Llama 3</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-generation")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Mistral</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-generation")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Mixtral</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-generation")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">MobileBERT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">MobileNetV2</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification, semantic-segmentation")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">MobileViT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification, semantic-segmentation")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">ModernBERT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">MPNet</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">OPT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-generation")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Phi</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">RoBERTa</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">RoFormer</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Swin</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">T5</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text2text-generation")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">UniSpeech</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, automatic-speech-recognition, audio-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">UniSpeech-SAT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, automatic-speech-recognition, audio-classification, audio-frame-classification, audio-xvector")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">ViT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Wav2Vec2</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, automatic-speech-recognition, audio-classification, audio-frame-classification, audio-xvector")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">WavLM</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, automatic-speech-recognition, audio-classification, audio-frame-classification, audio-xvector")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Whisper</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("automatic-speech-recognition")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">XLM</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">XLM-RoBERTa</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Yolos</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, object-detection")}</td></tr>
</tbody>
</table>
<h2>🧨 Diffusers</h2>
<table style="width: 100%; border-collapse: collapse; margin: 20px 0;">
<colgroup>
<col style="width: 30%;">
<col style="width: 70%;">
</colgroup>
<thead>
<tr style="background-color: var(--background-fill-secondary);">
<th style="border: 1px solid var(--border-color-primary); padding: 12px; text-align: left;">Architecture</th>
<th style="border: 1px solid var(--border-color-primary); padding: 12px; text-align: left;">Supported Tasks</th>
</tr>
</thead>
<tbody>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Stable Diffusion</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-to-image, image-to-image, inpaint")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Stable Diffusion XL Base</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-to-image, image-to-image, inpaint")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Stable Diffusion XL Refiner</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("image-to-image, inpaint")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">SDXL Turbo</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-to-image, image-to-image, inpaint")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">LCM</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-to-image")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">PixArt-α</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-to-image")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">PixArt-Σ</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-to-image")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Flux</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-to-image")}</td></tr>
</tbody>
</table>
<h2>🤖 Sentence Transformers</h2>
<table style="width: 100%; border-collapse: collapse; margin: 20px 0;">
<colgroup>
<col style="width: 30%;">
<col style="width: 70%;">
</colgroup>
<thead>
<tr style="background-color: var(--background-fill-secondary);">
<th style="border: 1px solid var(--border-color-primary); padding: 12px; text-align: left;">Architecture</th>
<th style="border: 1px solid var(--border-color-primary); padding: 12px; text-align: left;">Supported Tasks</th>
</tr>
</thead>
<tbody>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Transformer</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, sentence-similarity")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">CLIP</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, zero-shot-image-classification")}</td></tr>
</tbody>
</table>
<div style="margin-top: 20px;">
<p>💡 <strong>Note</strong>: Some architectures may have specific requirements or limitations. DeBERTa models are only supported on INF2 instances.</p>
<p>For more details, check the <a href="https://huggingface.co/docs/optimum-neuron" target="_blank">Optimum Neuron documentation</a>.</p>
</div>
""")
# Add spacing between tabs and content
gr.Markdown("<br><br><br><br>")
if __name__ == "__main__":
demo.launch(debug=True)