Spaces:
Runtime error
Runtime error
File size: 10,389 Bytes
95efa57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
from fastapi import FastAPI, File, UploadFile, HTTPException
from fastapi.responses import JSONResponse
from pydantic import BaseModel
import torch
import torch.nn.functional as F
from transformers import AutoImageProcessor, AutoModelForImageClassification
from PIL import Image
import io
import numpy as np
from typing import List, Dict, Any
import logging
import os
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
app = FastAPI(
title="ChatGPT Oasis Model Inference API",
description="FastAPI inference server for Oasis and ViT models deployed on Hugging Face Spaces with Docker",
version="1.0.0"
)
# Global variables to store loaded models
oasis_model = None
oasis_processor = None
vit_model = None
vit_processor = None
class InferenceRequest(BaseModel):
image: str # Base64 encoded image
model_name: str = "oasis500m" # Default to oasis model
class InferenceResponse(BaseModel):
predictions: List[Dict[str, Any]]
model_used: str
confidence_scores: List[float]
def load_models():
"""Load both models from local files"""
global oasis_model, oasis_processor, vit_model, vit_processor
try:
logger.info("Loading Oasis 500M model from local files...")
# Load Oasis model from local files
oasis_processor = AutoImageProcessor.from_pretrained("microsoft/oasis-500m")
oasis_model = AutoModelForImageClassification.from_pretrained(
"microsoft/oasis-500m",
local_files_only=False # Will download config but use local weights
)
# Load local weights if available
oasis_model_path = "/app/models/oasis500m.safetensors"
if os.path.exists(oasis_model_path):
logger.info("Loading Oasis weights from local file...")
from safetensors.torch import load_file
state_dict = load_file(oasis_model_path)
oasis_model.load_state_dict(state_dict, strict=False)
oasis_model.eval()
logger.info("Loading ViT-L-20 model from local files...")
# Load ViT model from local files
vit_processor = AutoImageProcessor.from_pretrained("google/vit-large-patch16-224")
vit_model = AutoModelForImageClassification.from_pretrained(
"google/vit-large-patch16-224",
local_files_only=False # Will download config but use local weights
)
# Load local weights if available
vit_model_path = "/app/models/vit-l-20.safetensors"
if os.path.exists(vit_model_path):
logger.info("Loading ViT weights from local file...")
from safetensors.torch import load_file
state_dict = load_file(vit_model_path)
vit_model.load_state_dict(state_dict, strict=False)
vit_model.eval()
logger.info("All models loaded successfully!")
except Exception as e:
logger.error(f"Error loading models: {e}")
raise e
@app.on_event("startup")
async def startup_event():
"""Load models when the application starts"""
load_models()
@app.get("/")
async def root():
"""Root endpoint with API information"""
return {
"message": "ChatGPT Oasis Model Inference API",
"version": "1.0.0",
"deployed_on": "Hugging Face Spaces (Docker)",
"available_models": ["oasis500m", "vit-l-20"],
"endpoints": {
"health": "/health",
"inference": "/inference",
"upload_inference": "/upload_inference",
"predict": "/predict"
},
"usage": {
"base64_inference": "POST /inference with JSON body containing 'image' (base64) and 'model_name'",
"file_upload": "POST /upload_inference with multipart form containing 'file' and optional 'model_name'",
"simple_predict": "POST /predict with file upload for quick inference"
}
}
@app.get("/health")
async def health_check():
"""Health check endpoint"""
models_status = {
"oasis500m": oasis_model is not None,
"vit-l-20": vit_model is not None
}
# Check if model files exist
model_files = {
"oasis500m": os.path.exists("/app/models/oasis500m.safetensors"),
"vit-l-20": os.path.exists("/app/models/vit-l-20.safetensors")
}
return {
"status": "healthy",
"models_loaded": models_status,
"model_files_present": model_files,
"deployment": "huggingface-spaces-docker"
}
def process_image_with_model(image: Image.Image, model_name: str):
"""Process image with the specified model"""
if model_name == "oasis500m":
if oasis_model is None or oasis_processor is None:
raise HTTPException(status_code=500, detail="Oasis model not loaded")
inputs = oasis_processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = oasis_model(**inputs)
logits = outputs.logits
probabilities = F.softmax(logits, dim=-1)
# Get top predictions
top_probs, top_indices = torch.topk(probabilities, 5)
predictions = []
for i in range(top_indices.shape[1]):
pred = {
"label": oasis_model.config.id2label[top_indices[0][i].item()],
"confidence": top_probs[0][i].item()
}
predictions.append(pred)
return predictions
elif model_name == "vit-l-20":
if vit_model is None or vit_processor is None:
raise HTTPException(status_code=500, detail="ViT model not loaded")
inputs = vit_processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = vit_model(**inputs)
logits = outputs.logits
probabilities = F.softmax(logits, dim=-1)
# Get top predictions
top_probs, top_indices = torch.topk(probabilities, 5)
predictions = []
for i in range(top_indices.shape[1]):
pred = {
"label": vit_model.config.id2label[top_indices[0][i].item()],
"confidence": top_probs[0][i].item()
}
predictions.append(pred)
return predictions
else:
raise HTTPException(status_code=400, detail=f"Unknown model: {model_name}")
@app.post("/inference", response_model=InferenceResponse)
async def inference(request: InferenceRequest):
"""Inference endpoint using base64 encoded image"""
try:
import base64
# Decode base64 image
image_data = base64.b64decode(request.image)
image = Image.open(io.BytesIO(image_data)).convert('RGB')
# Process with model
predictions = process_image_with_model(image, request.model_name)
# Extract confidence scores
confidence_scores = [pred["confidence"] for pred in predictions]
return InferenceResponse(
predictions=predictions,
model_used=request.model_name,
confidence_scores=confidence_scores
)
except Exception as e:
logger.error(f"Inference error: {e}")
raise HTTPException(status_code=500, detail=str(e))
@app.post("/upload_inference", response_model=InferenceResponse)
async def upload_inference(
file: UploadFile = File(...),
model_name: str = "oasis500m"
):
"""Inference endpoint using file upload"""
try:
# Validate file type
if not file.content_type.startswith('image/'):
raise HTTPException(status_code=400, detail="File must be an image")
# Read and process image
image_data = await file.read()
image = Image.open(io.BytesIO(image_data)).convert('RGB')
# Process with model
predictions = process_image_with_model(image, model_name)
# Extract confidence scores
confidence_scores = [pred["confidence"] for pred in predictions]
return InferenceResponse(
predictions=predictions,
model_used=model_name,
confidence_scores=confidence_scores
)
except Exception as e:
logger.error(f"Upload inference error: {e}")
raise HTTPException(status_code=500, detail=str(e))
@app.get("/models")
async def list_models():
"""List available models and their status"""
return {
"available_models": [
{
"name": "oasis500m",
"description": "Oasis 500M vision model",
"loaded": oasis_model is not None,
"file_present": os.path.exists("/app/models/oasis500m.safetensors")
},
{
"name": "vit-l-20",
"description": "Vision Transformer Large model",
"loaded": vit_model is not None,
"file_present": os.path.exists("/app/models/vit-l-20.safetensors")
}
]
}
# Hugging Face Spaces specific endpoint for Gradio compatibility
@app.post("/predict")
async def predict(file: UploadFile = File(...)):
"""Simple prediction endpoint for Hugging Face Spaces integration"""
try:
# Validate file type
if not file.content_type.startswith('image/'):
raise HTTPException(status_code=400, detail="File must be an image")
# Read and process image
image_data = await file.read()
image = Image.open(io.BytesIO(image_data)).convert('RGB')
# Process with default model (oasis500m)
predictions = process_image_with_model(image, "oasis500m")
# Return simplified format for Gradio
return {
"predictions": predictions[:3], # Top 3 predictions
"model_used": "oasis500m"
}
except Exception as e:
logger.error(f"Predict error: {e}")
raise HTTPException(status_code=500, detail=str(e))
|