chatgpt-oasis / main.py
parthraninga's picture
Upload 10 files
95efa57 verified
raw
history blame
7.4 kB
from fastapi import FastAPI, File, UploadFile, HTTPException
from fastapi.responses import JSONResponse
from pydantic import BaseModel
import torch
import torch.nn.functional as F
from transformers import AutoImageProcessor, AutoModelForImageClassification
from PIL import Image
import io
import numpy as np
from typing import List, Dict, Any
import logging
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
app = FastAPI(
title="ChatGPT Oasis Model Inference API",
description="FastAPI inference server for Oasis and ViT models",
version="1.0.0"
)
# Global variables to store loaded models
oasis_model = None
oasis_processor = None
vit_model = None
vit_processor = None
class InferenceRequest(BaseModel):
image: str # Base64 encoded image
model_name: str = "oasis500m" # Default to oasis model
class InferenceResponse(BaseModel):
predictions: List[Dict[str, Any]]
model_used: str
confidence_scores: List[float]
def load_models():
"""Load both models into memory"""
global oasis_model, oasis_processor, vit_model, vit_processor
try:
logger.info("Loading Oasis 500M model...")
# Load Oasis model
oasis_processor = AutoImageProcessor.from_pretrained("microsoft/oasis-500m")
oasis_model = AutoModelForImageClassification.from_pretrained("microsoft/oasis-500m")
oasis_model.eval()
logger.info("Loading ViT-L-20 model...")
# Load ViT model
vit_processor = AutoImageProcessor.from_pretrained("google/vit-large-patch16-224")
vit_model = AutoModelForImageClassification.from_pretrained("google/vit-large-patch16-224")
vit_model.eval()
logger.info("All models loaded successfully!")
except Exception as e:
logger.error(f"Error loading models: {e}")
raise e
@app.on_event("startup")
async def startup_event():
"""Load models when the application starts"""
load_models()
@app.get("/")
async def root():
"""Root endpoint with API information"""
return {
"message": "ChatGPT Oasis Model Inference API",
"version": "1.0.0",
"available_models": ["oasis500m", "vit-l-20"],
"endpoints": {
"health": "/health",
"inference": "/inference",
"upload_inference": "/upload_inference"
}
}
@app.get("/health")
async def health_check():
"""Health check endpoint"""
models_status = {
"oasis500m": oasis_model is not None,
"vit-l-20": vit_model is not None
}
return {
"status": "healthy",
"models_loaded": models_status
}
def process_image_with_model(image: Image.Image, model_name: str):
"""Process image with the specified model"""
if model_name == "oasis500m":
if oasis_model is None or oasis_processor is None:
raise HTTPException(status_code=500, detail="Oasis model not loaded")
inputs = oasis_processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = oasis_model(**inputs)
logits = outputs.logits
probabilities = F.softmax(logits, dim=-1)
# Get top predictions
top_probs, top_indices = torch.topk(probabilities, 5)
predictions = []
for i in range(top_indices.shape[1]):
pred = {
"label": oasis_model.config.id2label[top_indices[0][i].item()],
"confidence": top_probs[0][i].item()
}
predictions.append(pred)
return predictions
elif model_name == "vit-l-20":
if vit_model is None or vit_processor is None:
raise HTTPException(status_code=500, detail="ViT model not loaded")
inputs = vit_processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = vit_model(**inputs)
logits = outputs.logits
probabilities = F.softmax(logits, dim=-1)
# Get top predictions
top_probs, top_indices = torch.topk(probabilities, 5)
predictions = []
for i in range(top_indices.shape[1]):
pred = {
"label": vit_model.config.id2label[top_indices[0][i].item()],
"confidence": top_probs[0][i].item()
}
predictions.append(pred)
return predictions
else:
raise HTTPException(status_code=400, detail=f"Unknown model: {model_name}")
@app.post("/inference", response_model=InferenceResponse)
async def inference(request: InferenceRequest):
"""Inference endpoint using base64 encoded image"""
try:
import base64
# Decode base64 image
image_data = base64.b64decode(request.image)
image = Image.open(io.BytesIO(image_data)).convert('RGB')
# Process with model
predictions = process_image_with_model(image, request.model_name)
# Extract confidence scores
confidence_scores = [pred["confidence"] for pred in predictions]
return InferenceResponse(
predictions=predictions,
model_used=request.model_name,
confidence_scores=confidence_scores
)
except Exception as e:
logger.error(f"Inference error: {e}")
raise HTTPException(status_code=500, detail=str(e))
@app.post("/upload_inference", response_model=InferenceResponse)
async def upload_inference(
file: UploadFile = File(...),
model_name: str = "oasis500m"
):
"""Inference endpoint using file upload"""
try:
# Validate file type
if not file.content_type.startswith('image/'):
raise HTTPException(status_code=400, detail="File must be an image")
# Read and process image
image_data = await file.read()
image = Image.open(io.BytesIO(image_data)).convert('RGB')
# Process with model
predictions = process_image_with_model(image, model_name)
# Extract confidence scores
confidence_scores = [pred["confidence"] for pred in predictions]
return InferenceResponse(
predictions=predictions,
model_used=model_name,
confidence_scores=confidence_scores
)
except Exception as e:
logger.error(f"Upload inference error: {e}")
raise HTTPException(status_code=500, detail=str(e))
@app.get("/models")
async def list_models():
"""List available models and their status"""
return {
"available_models": [
{
"name": "oasis500m",
"description": "Oasis 500M vision model",
"loaded": oasis_model is not None
},
{
"name": "vit-l-20",
"description": "Vision Transformer Large model",
"loaded": vit_model is not None
}
]
}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)