Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,546 Bytes
41f287b eb21945 41f287b eb21945 41f287b eb21945 41f287b eb21945 41f287b eb21945 41f287b 25a44d8 41f287b eb21945 7929358 41f287b eb21945 41f287b 25a44d8 41f287b eb21945 41f287b eb21945 41f287b eb21945 41f287b 9304abf eb21945 41f287b eb21945 41f287b 4334bf2 eb21945 25a44d8 41f287b eb21945 41f287b eb21945 41f287b eb21945 41f287b eb21945 41f287b eb21945 41f287b eb21945 41f287b 25a44d8 eb21945 41f287b eb21945 41f287b 25a44d8 eb21945 41f287b eb21945 25a44d8 41f287b 25a44d8 eb21945 25a44d8 eb21945 25a44d8 eb21945 25a44d8 eb21945 25a44d8 eb21945 25a44d8 eb21945 25a44d8 eb21945 41f287b 25a44d8 41f287b eb21945 25a44d8 41f287b eb21945 41f287b eb21945 25a44d8 eb21945 25a44d8 41f287b 25a44d8 41f287b 4ea5f1d 4334bf2 41f287b 25a44d8 41f287b eb21945 41f287b 25a44d8 eb21945 25a44d8 eb21945 25a44d8 eb21945 25a44d8 eb21945 25a44d8 cc7a352 25a44d8 41f287b 25a44d8 f5e1158 25a44d8 eb21945 25a44d8 eb21945 25a44d8 eb21945 25a44d8 eb21945 25a44d8 eb21945 25a44d8 eb21945 25a44d8 eb21945 25a44d8 eb21945 25a44d8 eb21945 f5e1158 eb21945 25a44d8 eb21945 25a44d8 eb21945 25a44d8 695bc1c 25a44d8 41f287b 25a44d8 41f287b 25a44d8 41f287b 25a44d8 41f287b 25a44d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
import os
import random
import uuid
import json
import time
import asyncio
from threading import Thread
import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image, ImageOps
import cv2
from transformers import (
Qwen2VLForConditionalGeneration,
Qwen2_5_VLForConditionalGeneration,
AutoModelForCausalLM,
AutoModelForVision2Seq,
AutoProcessor,
TextIteratorStreamer,
)
from transformers.image_utils import load_image
# These imports seem to be from a custom library.
# If you have 'docling_core' installed, you can uncomment them.
# from docling_core.types.doc import DoclingDocument, DocTagsDocument
import re
import ast
import html
# Constants for text generation
MAX_MAX_NEW_TOKENS = 5120
DEFAULT_MAX_NEW_TOKENS = 3072
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# --- Model Loading ---
# Load Nanonets-OCR-s
MODEL_ID_M = "nanonets/Nanonets-OCR-s"
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_M,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Load MonkeyOCR
MODEL_ID_G = "echo840/MonkeyOCR"
SUBFOLDER = "Recognition"
processor_g = AutoProcessor.from_pretrained(
MODEL_ID_G,
trust_remote_code=True,
subfolder=SUBFOLDER
)
model_g = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_G,
trust_remote_code=True,
subfolder=SUBFOLDER,
torch_dtype=torch.float16
).to(device).eval()
# Load Typhoon-OCR-7B
MODEL_ID_L = "scb10x/typhoon-ocr-7b"
processor_l = AutoProcessor.from_pretrained(MODEL_ID_L, trust_remote_code=True)
model_l = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_L,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Load SmolDocling-256M-preview
MODEL_ID_X = "ds4sd/SmolDocling-256M-preview"
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
model_x = AutoModelForVision2Seq.from_pretrained(
MODEL_ID_X,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Thyme-RL
MODEL_ID_N = "Kwai-Keye/Thyme-RL"
processor_n = AutoProcessor.from_pretrained(MODEL_ID_N, trust_remote_code=True)
model_n = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_N,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# --- Preprocessing and Helper Functions ---
def add_random_padding(image, min_percent=0.1, max_percent=0.10):
"""Add random padding to an image based on its size."""
image = image.convert("RGB")
width, height = image.size
pad_w_percent = random.uniform(min_percent, max_percent)
pad_h_percent = random.uniform(min_percent, max_percent)
pad_w = int(width * pad_w_percent)
pad_h = int(height * pad_h_percent)
corner_pixel = image.getpixel((0, 0)) # Top-left corner
padded_image = ImageOps.expand(image, border=(pad_w, pad_h, pad_w, pad_h), fill=corner_pixel)
return padded_image
def normalize_values(text, target_max=500):
"""Normalize numerical values in text to a target maximum."""
def normalize_list(values):
max_value = max(values) if values else 1
return [round((v / max_value) * target_max) for v in values]
def process_match(match):
num_list = ast.literal_eval(match.group(0))
normalized = normalize_list(num_list)
return "".join([f"<loc_{num}>" for num in normalized])
pattern = r"\[([\d\.\s,]+)\]"
normalized_text = re.sub(pattern, process_match, text)
return normalized_text
def downsample_video(video_path):
"""Downsample a video to evenly spaced frames, returning PIL images with timestamps."""
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vidcap.get(cv2.CAP_PROP_FPS)
frames = []
# Use 10 frames for video processing
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
vidcap.release()
return frames
# A placeholder function in case docling_core is not installed
def format_smoldocling_output(buffer_text, images):
cleaned_output = buffer_text.replace("<end_of_utterance>", "").strip()
# Check if docling_core is available and was imported
if 'DocTagsDocument' in globals() and 'DoclingDocument' in globals():
if any(tag in cleaned_output for tag in ["<doctag>", "<otsl>", "<code>", "<chart>", "<formula>"]):
if "<chart>" in cleaned_output:
cleaned_output = cleaned_output.replace("<chart>", "<otsl>").replace("</chart>", "</otsl>")
cleaned_output = re.sub(r'(<loc_500>)(?!.*<loc_500>)<[^>]+>', r'\1', cleaned_output)
doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([cleaned_output], images)
doc = DoclingDocument.load_from_doctags(doctags_doc, document_name="Document")
markdown_output = doc.export_to_markdown()
return buffer_text, markdown_output
# Fallback if library is not available or tags are not present
return buffer_text, cleaned_output
# --- Core Generation Logic ---
def get_model_and_processor(model_name):
"""Helper to select model and processor."""
if model_name == "Nanonets-OCR-s":
return processor_m, model_m
elif model_name == "MonkeyOCR-Recognition":
return processor_g, model_g
elif model_name == "SmolDocling-256M-preview":
return processor_x, model_x
elif model_name == "Typhoon-OCR-7B":
return processor_l, model_l
elif model_name == "Thyme-RL":
return processor_n, model_n
else:
return None, None
@spaces.GPU
def generate_response(model_name: str, text: str, media_input, media_type: str,
max_new_tokens: int, temperature: float, top_p: float, top_k: int, repetition_penalty: float):
"""Unified generation function for both image and video."""
processor, model = get_model_and_processor(model_name)
if not processor or not model:
yield "Invalid model selected.", "Invalid model selected."
return
if media_input is None:
yield f"Please upload a {media_type}.", f"Please upload a {media_type}."
return
if media_type == "video":
frames = downsample_video(media_input)
images = [frame for frame, _ in frames]
else: # image
images = [media_input]
if model_name == "SmolDocling-256M-preview":
if "OTSL" in text or "code" in text:
images = [add_random_padding(img) for img in images]
if "OCR at text at" in text or "Identify element" in text or "formula" in text:
text = normalize_values(text, target_max=500)
messages = [
{"role": "user", "content": [{"type": "image"} for _ in images] + [{"type": "text", "text": text}]}
]
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(text=prompt, images=images, return_tensors="pt").to(device)
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
**inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text.replace("<|im_end|>", "")
yield buffer, buffer
if model_name == "SmolDocling-256M-preview":
raw_output, formatted_output = format_smoldocling_output(buffer, images)
yield raw_output, formatted_output
else:
# For other models, the formatted output is just the cleaned buffer
yield buffer, buffer.strip()
def generate_image_wrapper(*args):
yield from generate_response(*args, media_type="image")
def generate_video_wrapper(*args):
yield from generate_response(*args, media_type="video")
# --- Examples ---
image_examples = [
["Reconstruct the doc [table] as it is.", "images/0.png"],
["Describe the image!", "images/8.png"],
["OCR the image", "images/2.jpg"],
["Convert this page to docling", "images/1.png"],
["Convert this page to docling", "images/3.png"],
["Convert chart to OTSL.", "images/4.png"],
["Convert code to text", "images/5.jpg"],
["Convert this table to OTSL.", "images/6.jpg"],
["Convert formula to latex.", "images/7.jpg"],
]
video_examples = [
["Explain the video in detail.", "videos/1.mp4"],
["Explain the video in detail.", "videos/2.mp4"]
]
# --- UI Styling ---
css = """
.submit-btn {
background-color: #2980b9 !important;
color: white !important;
border: none !important;
box-shadow: 2px 2px 5px rgba(0,0,0,0.2) !important;
}
.submit-btn:hover {
background-color: #3498db !important;
box-shadow: 2px 2px 8px rgba(0,0,0,0.3) !important;
}
.canvas-output {
border: 2px solid #4682B4;
border-radius: 10px;
padding: 20px;
background-color: #f0f8ff;
}
"""
# --- Gradio Interface ---
with gr.Blocks(css=css) as demo:
gr.Markdown("# **[Multimodal OCR2](https://huggingface.co/collections/prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0)**")
with gr.Row():
# Left Column for Inputs and Controls
with gr.Column(scale=1):
with gr.Tabs():
with gr.TabItem("🖼️ Image Inference"):
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
image_upload = gr.Image(type="pil", label="Upload Image", height=300)
gr.Examples(
examples=image_examples,
inputs=[image_query, image_upload],
label="Image Examples"
)
image_submit = gr.Button("Submit", elem_classes="submit-btn")
with gr.TabItem("🎥 Video Inference"):
video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
video_upload = gr.Video(label="Upload Video", height=300)
gr.Examples(
examples=video_examples,
inputs=[video_query, video_upload],
label="Video Examples"
)
video_submit = gr.Button("Submit", elem_classes="submit-btn")
with gr.Accordion("⚙️ Advanced Options", open=False):
max_new_tokens = gr.Slider(label="Max New Tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
repetition_penalty = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
# Right Column for Outputs and Model Info
with gr.Column(scale=1):
with gr.Column(elem_classes="canvas-output"):
gr.Markdown("## Output")
raw_output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=5)
with gr.Accordion("📄 Formatted Result (Result.md)", open=True):
formatted_output = gr.Markdown(label="Formatted Output")
model_choice = gr.Radio(
choices=["Nanonets-OCR-s", "MonkeyOCR-Recognition", "Thyme-RL", "Typhoon-OCR-7B", "SmolDocling-256M-preview"],
label="🤖 Select Model",
value="Nanonets-OCR-s"
)
gr.Markdown("**Model Info 💻** | [Report Bug](https://huggingface.co/spaces/prithivMLmods/Multimodal-OCR2/discussions)")
gr.Markdown("> **[Nanonets-OCR-s](https://huggingface.co/nanonets/Nanonets-OCR-s)**: A powerful, state-of-the-art image-to-markdown OCR model that transforms documents into structured markdown with intelligent content recognition.")
gr.Markdown("> **[SmolDocling-256M](https://huggingface.co/ds4sd/SmolDocling-256M-preview)**: A multimodal Image-Text-to-Text model designed for efficient document conversion, retaining key features of the larger Docling model.")
gr.Markdown("> **[MonkeyOCR-Recognition](https://huggingface.co/echo840/MonkeyOCR)**: Adopts a Structure-Recognition-Relation (SRR) paradigm, simplifying the pipeline for document processing.")
gr.Markdown("> **[Typhoon-OCR-7B](https://huggingface.co/scb10x/typhoon-ocr-7b)**: A bilingual document parsing model for real-world documents in Thai and English, capable of extracting text from images and charts.")
gr.Markdown("> **[Thyme-RL](https://huggingface.co/Kwai-Keye/Thyme-RL)**: Thyme transcends traditional 'thinking with images' by autonomously generating and executing code for image processing and computation, enhancing performance on complex reasoning tasks.")
gr.Markdown("> ⚠️ **Note**: All models in this space are primarily optimized for image tasks and may not perform as well on video inference use cases.")
# --- Event Handlers ---
common_inputs = [model_choice, max_new_tokens, temperature, top_p, top_k, repetition_penalty]
common_outputs = [raw_output, formatted_output]
image_submit.click(
fn=generate_image_wrapper,
inputs=[image_query, image_upload] + common_inputs,
outputs=common_outputs
)
video_submit.click(
fn=generate_video_wrapper,
inputs=[video_query, video_upload] + common_inputs,
outputs=common_outputs
)
if __name__ == "__main__":
demo.queue(max_size=50).launch(share=True, show_error=True) |