File size: 14,546 Bytes
41f287b
 
eb21945
 
 
41f287b
 
 
 
 
 
 
 
 
eb21945
41f287b
eb21945
41f287b
eb21945
41f287b
 
 
 
eb21945
41f287b
25a44d8
 
 
41f287b
eb21945
 
 
 
 
7929358
 
41f287b
 
eb21945
41f287b
25a44d8
41f287b
eb21945
 
 
 
 
 
 
41f287b
 
eb21945
 
 
 
 
 
41f287b
eb21945
 
 
 
 
 
41f287b
9304abf
eb21945
 
 
 
 
 
 
41f287b
 
eb21945
 
 
 
 
 
 
41f287b
4334bf2
eb21945
 
 
 
 
 
 
 
25a44d8
 
41f287b
 
 
 
 
 
 
 
eb21945
 
41f287b
 
 
eb21945
41f287b
 
 
 
 
eb21945
 
 
41f287b
 
eb21945
 
41f287b
eb21945
 
41f287b
 
eb21945
41f287b
25a44d8
eb21945
41f287b
 
 
 
eb21945
 
 
 
41f287b
 
 
25a44d8
 
 
 
 
eb21945
41f287b
 
 
eb21945
 
 
25a44d8
 
 
41f287b
25a44d8
 
 
eb21945
25a44d8
eb21945
25a44d8
eb21945
25a44d8
eb21945
25a44d8
eb21945
25a44d8
eb21945
25a44d8
 
 
 
 
 
 
 
eb21945
41f287b
 
25a44d8
 
41f287b
eb21945
25a44d8
 
 
 
 
41f287b
eb21945
 
 
 
 
41f287b
eb21945
25a44d8
eb21945
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25a44d8
 
 
 
 
 
 
 
41f287b
25a44d8
 
 
 
 
41f287b
4ea5f1d
4334bf2
41f287b
 
 
 
 
 
25a44d8
41f287b
 
 
 
eb21945
41f287b
 
25a44d8
eb21945
 
 
 
25a44d8
 
eb21945
 
 
25a44d8
eb21945
 
 
 
 
25a44d8
eb21945
 
 
25a44d8
 
cc7a352
25a44d8
41f287b
25a44d8
 
f5e1158
25a44d8
eb21945
25a44d8
eb21945
 
25a44d8
 
eb21945
25a44d8
 
 
eb21945
25a44d8
eb21945
 
25a44d8
 
eb21945
25a44d8
 
 
 
eb21945
 
 
25a44d8
eb21945
25a44d8
 
eb21945
f5e1158
eb21945
 
25a44d8
 
eb21945
 
 
25a44d8
eb21945
 
 
 
25a44d8
 
 
 
 
 
695bc1c
25a44d8
 
 
 
41f287b
25a44d8
 
 
41f287b
25a44d8
41f287b
25a44d8
 
 
41f287b
 
 
25a44d8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
import os
import random
import uuid
import json
import time
import asyncio
from threading import Thread

import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image, ImageOps
import cv2

from transformers import (
    Qwen2VLForConditionalGeneration,
    Qwen2_5_VLForConditionalGeneration,
    AutoModelForCausalLM,
    AutoModelForVision2Seq,
    AutoProcessor,
    TextIteratorStreamer,
)
from transformers.image_utils import load_image

# These imports seem to be from a custom library.
# If you have 'docling_core' installed, you can uncomment them.
# from docling_core.types.doc import DoclingDocument, DocTagsDocument

import re
import ast
import html

# Constants for text generation
MAX_MAX_NEW_TOKENS = 5120
DEFAULT_MAX_NEW_TOKENS = 3072
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# --- Model Loading ---
# Load Nanonets-OCR-s
MODEL_ID_M = "nanonets/Nanonets-OCR-s"
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_M,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()

# Load MonkeyOCR
MODEL_ID_G = "echo840/MonkeyOCR"
SUBFOLDER = "Recognition"
processor_g = AutoProcessor.from_pretrained(
    MODEL_ID_G,
    trust_remote_code=True,
    subfolder=SUBFOLDER
)
model_g = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_G,
    trust_remote_code=True,
    subfolder=SUBFOLDER,
    torch_dtype=torch.float16
).to(device).eval()

# Load Typhoon-OCR-7B
MODEL_ID_L = "scb10x/typhoon-ocr-7b"
processor_l = AutoProcessor.from_pretrained(MODEL_ID_L, trust_remote_code=True)
model_l = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_L,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()

# Load SmolDocling-256M-preview
MODEL_ID_X = "ds4sd/SmolDocling-256M-preview"
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
model_x = AutoModelForVision2Seq.from_pretrained(
    MODEL_ID_X,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()

# Thyme-RL
MODEL_ID_N = "Kwai-Keye/Thyme-RL"
processor_n = AutoProcessor.from_pretrained(MODEL_ID_N, trust_remote_code=True)
model_n = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_N,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()


# --- Preprocessing and Helper Functions ---
def add_random_padding(image, min_percent=0.1, max_percent=0.10):
    """Add random padding to an image based on its size."""
    image = image.convert("RGB")
    width, height = image.size
    pad_w_percent = random.uniform(min_percent, max_percent)
    pad_h_percent = random.uniform(min_percent, max_percent)
    pad_w = int(width * pad_w_percent)
    pad_h = int(height * pad_h_percent)
    corner_pixel = image.getpixel((0, 0))  # Top-left corner
    padded_image = ImageOps.expand(image, border=(pad_w, pad_h, pad_w, pad_h), fill=corner_pixel)
    return padded_image

def normalize_values(text, target_max=500):
    """Normalize numerical values in text to a target maximum."""
    def normalize_list(values):
        max_value = max(values) if values else 1
        return [round((v / max_value) * target_max) for v in values]

    def process_match(match):
        num_list = ast.literal_eval(match.group(0))
        normalized = normalize_list(num_list)
        return "".join([f"<loc_{num}>" for num in normalized])

    pattern = r"\[([\d\.\s,]+)\]"
    normalized_text = re.sub(pattern, process_match, text)
    return normalized_text

def downsample_video(video_path):
    """Downsample a video to evenly spaced frames, returning PIL images with timestamps."""
    vidcap = cv2.VideoCapture(video_path)
    total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = vidcap.get(cv2.CAP_PROP_FPS)
    frames = []
    # Use 10 frames for video processing
    frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
    for i in frame_indices:
        vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
        success, image = vidcap.read()
        if success:
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            pil_image = Image.fromarray(image)
            timestamp = round(i / fps, 2)
            frames.append((pil_image, timestamp))
    vidcap.release()
    return frames

# A placeholder function in case docling_core is not installed
def format_smoldocling_output(buffer_text, images):
    cleaned_output = buffer_text.replace("<end_of_utterance>", "").strip()
    # Check if docling_core is available and was imported
    if 'DocTagsDocument' in globals() and 'DoclingDocument' in globals():
        if any(tag in cleaned_output for tag in ["<doctag>", "<otsl>", "<code>", "<chart>", "<formula>"]):
            if "<chart>" in cleaned_output:
                cleaned_output = cleaned_output.replace("<chart>", "<otsl>").replace("</chart>", "</otsl>")
                cleaned_output = re.sub(r'(<loc_500>)(?!.*<loc_500>)<[^>]+>', r'\1', cleaned_output)
            doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([cleaned_output], images)
            doc = DoclingDocument.load_from_doctags(doctags_doc, document_name="Document")
            markdown_output = doc.export_to_markdown()
            return buffer_text, markdown_output
    # Fallback if library is not available or tags are not present
    return buffer_text, cleaned_output

# --- Core Generation Logic ---
def get_model_and_processor(model_name):
    """Helper to select model and processor."""
    if model_name == "Nanonets-OCR-s":
        return processor_m, model_m
    elif model_name == "MonkeyOCR-Recognition":
        return processor_g, model_g
    elif model_name == "SmolDocling-256M-preview":
        return processor_x, model_x
    elif model_name == "Typhoon-OCR-7B":
        return processor_l, model_l
    elif model_name == "Thyme-RL":
        return processor_n, model_n
    else:
        return None, None

@spaces.GPU
def generate_response(model_name: str, text: str, media_input, media_type: str,
                      max_new_tokens: int, temperature: float, top_p: float, top_k: int, repetition_penalty: float):
    """Unified generation function for both image and video."""
    processor, model = get_model_and_processor(model_name)
    if not processor or not model:
        yield "Invalid model selected.", "Invalid model selected."
        return

    if media_input is None:
        yield f"Please upload a {media_type}.", f"Please upload a {media_type}."
        return

    if media_type == "video":
        frames = downsample_video(media_input)
        images = [frame for frame, _ in frames]
    else: # image
        images = [media_input]

    if model_name == "SmolDocling-256M-preview":
        if "OTSL" in text or "code" in text:
            images = [add_random_padding(img) for img in images]
        if "OCR at text at" in text or "Identify element" in text or "formula" in text:
            text = normalize_values(text, target_max=500)

    messages = [
        {"role": "user", "content": [{"type": "image"} for _ in images] + [{"type": "text", "text": text}]}
    ]
    prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
    inputs = processor(text=prompt, images=images, return_tensors="pt").to(device)

    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
    generation_kwargs = {
        **inputs,
        "streamer": streamer,
        "max_new_tokens": max_new_tokens,
        "temperature": temperature,
        "top_p": top_p,
        "top_k": top_k,
        "repetition_penalty": repetition_penalty,
    }
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()

    buffer = ""
    for new_text in streamer:
        buffer += new_text.replace("<|im_end|>", "")
        yield buffer, buffer

    if model_name == "SmolDocling-256M-preview":
        raw_output, formatted_output = format_smoldocling_output(buffer, images)
        yield raw_output, formatted_output
    else:
        # For other models, the formatted output is just the cleaned buffer
        yield buffer, buffer.strip()

def generate_image_wrapper(*args):
    yield from generate_response(*args, media_type="image")

def generate_video_wrapper(*args):
    yield from generate_response(*args, media_type="video")


# --- Examples ---
image_examples = [
    ["Reconstruct the doc [table] as it is.", "images/0.png"],
    ["Describe the image!", "images/8.png"],
    ["OCR the image", "images/2.jpg"],
    ["Convert this page to docling", "images/1.png"],
    ["Convert this page to docling", "images/3.png"],
    ["Convert chart to OTSL.", "images/4.png"],
    ["Convert code to text", "images/5.jpg"],
    ["Convert this table to OTSL.", "images/6.jpg"],
    ["Convert formula to latex.", "images/7.jpg"],
]

video_examples = [
    ["Explain the video in detail.", "videos/1.mp4"],
    ["Explain the video in detail.", "videos/2.mp4"]
]

# --- UI Styling ---
css = """
.submit-btn {
    background-color: #2980b9 !important;
    color: white !important;
    border: none !important;
    box-shadow: 2px 2px 5px rgba(0,0,0,0.2) !important;
}
.submit-btn:hover {
    background-color: #3498db !important;
    box-shadow: 2px 2px 8px rgba(0,0,0,0.3) !important;
}
.canvas-output {
    border: 2px solid #4682B4;
    border-radius: 10px;
    padding: 20px;
    background-color: #f0f8ff;
}
"""

# --- Gradio Interface ---
with gr.Blocks(css=css) as demo:
    gr.Markdown("# **[Multimodal OCR2](https://huggingface.co/collections/prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0)**")
    
    with gr.Row():
        # Left Column for Inputs and Controls
        with gr.Column(scale=1):
            with gr.Tabs():
                with gr.TabItem("🖼️ Image Inference"):
                    image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
                    image_upload = gr.Image(type="pil", label="Upload Image", height=300)
                    gr.Examples(
                        examples=image_examples,
                        inputs=[image_query, image_upload],
                        label="Image Examples"
                    )
                    image_submit = gr.Button("Submit", elem_classes="submit-btn")
                    
                with gr.TabItem("🎥 Video Inference"):
                    video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
                    video_upload = gr.Video(label="Upload Video", height=300)
                    gr.Examples(
                        examples=video_examples,
                        inputs=[video_query, video_upload],
                        label="Video Examples"
                    )
                    video_submit = gr.Button("Submit", elem_classes="submit-btn")
            
            with gr.Accordion("⚙️ Advanced Options", open=False):
                max_new_tokens = gr.Slider(label="Max New Tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
                temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
                top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
                top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
                repetition_penalty = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
                
        # Right Column for Outputs and Model Info
        with gr.Column(scale=1):
            with gr.Column(elem_classes="canvas-output"):
                gr.Markdown("## Output")
                raw_output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=5)
                
                with gr.Accordion("📄 Formatted Result (Result.md)", open=True):
                    formatted_output = gr.Markdown(label="Formatted Output")
            
            model_choice = gr.Radio(
                choices=["Nanonets-OCR-s", "MonkeyOCR-Recognition", "Thyme-RL", "Typhoon-OCR-7B", "SmolDocling-256M-preview"],
                label="🤖 Select Model",
                value="Nanonets-OCR-s"
            )
            
            gr.Markdown("**Model Info 💻** | [Report Bug](https://huggingface.co/spaces/prithivMLmods/Multimodal-OCR2/discussions)")
            gr.Markdown("> **[Nanonets-OCR-s](https://huggingface.co/nanonets/Nanonets-OCR-s)**: A powerful, state-of-the-art image-to-markdown OCR model that transforms documents into structured markdown with intelligent content recognition.")
            gr.Markdown("> **[SmolDocling-256M](https://huggingface.co/ds4sd/SmolDocling-256M-preview)**: A multimodal Image-Text-to-Text model designed for efficient document conversion, retaining key features of the larger Docling model.")
            gr.Markdown("> **[MonkeyOCR-Recognition](https://huggingface.co/echo840/MonkeyOCR)**: Adopts a Structure-Recognition-Relation (SRR) paradigm, simplifying the pipeline for document processing.")
            gr.Markdown("> **[Typhoon-OCR-7B](https://huggingface.co/scb10x/typhoon-ocr-7b)**: A bilingual document parsing model for real-world documents in Thai and English, capable of extracting text from images and charts.")
            gr.Markdown("> **[Thyme-RL](https://huggingface.co/Kwai-Keye/Thyme-RL)**: Thyme transcends traditional 'thinking with images' by autonomously generating and executing code for image processing and computation, enhancing performance on complex reasoning tasks.")
            gr.Markdown("> ⚠️ **Note**: All models in this space are primarily optimized for image tasks and may not perform as well on video inference use cases.")  
            
    # --- Event Handlers ---
    common_inputs = [model_choice, max_new_tokens, temperature, top_p, top_k, repetition_penalty]
    common_outputs = [raw_output, formatted_output]
    
    image_submit.click(
        fn=generate_image_wrapper,
        inputs=[image_query, image_upload] + common_inputs,
        outputs=common_outputs
    )
    
    video_submit.click(
        fn=generate_video_wrapper,
        inputs=[video_query, video_upload] + common_inputs,
        outputs=common_outputs
    )

if __name__ == "__main__":
    demo.queue(max_size=50).launch(share=True, show_error=True)